Metamath Proof Explorer


Theorem etransclem15

Description: Value of the term T , when J = 0 and ( C0 ) = P - 1 (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem15.p φP
etransclem15.m φM0
etransclem15.n φN0
etransclem15.c φC:0M0N
etransclem15.t T=N!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj
etransclem15.j φJ=0
etransclem15.cpm1 φC0P1
Assertion etransclem15 φT=0

Proof

Step Hyp Ref Expression
1 etransclem15.p φP
2 etransclem15.m φM0
3 etransclem15.n φN0
4 etransclem15.c φC:0M0N
5 etransclem15.t T=N!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj
6 etransclem15.j φJ=0
7 etransclem15.cpm1 φC0P1
8 5 a1i φT=N!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj
9 iftrue P1<C0ifP1<C00P1!P-1-C0!JP-1-C0=0
10 9 adantl φP1<C0ifP1<C00P1!P-1-C0!JP-1-C0=0
11 iffalse ¬P1<C0ifP1<C00P1!P-1-C0!JP-1-C0=P1!P-1-C0!JP-1-C0
12 11 adantl φ¬P1<C0ifP1<C00P1!P-1-C0!JP-1-C0=P1!P-1-C0!JP-1-C0
13 6 oveq1d φJP-1-C0=0P-1-C0
14 13 adantr φ¬P1<C0JP-1-C0=0P-1-C0
15 1 nnzd φP
16 1zzd φ1
17 15 16 zsubcld φP1
18 nn0uz 0=0
19 2 18 eleqtrdi φM0
20 eluzfz1 M000M
21 19 20 syl φ00M
22 4 21 ffvelcdmd φC00N
23 22 elfzelzd φC0
24 17 23 zsubcld φP-1-C0
25 24 adantr φ¬P1<C0P-1-C0
26 23 zred φC0
27 26 adantr φ¬P1<C0C0
28 17 zred φP1
29 28 adantr φ¬P1<C0P1
30 simpr φ¬P1<C0¬P1<C0
31 27 29 30 nltled φ¬P1<C0C0P1
32 7 necomd φP1C0
33 32 adantr φ¬P1<C0P1C0
34 27 29 31 33 leneltd φ¬P1<C0C0<P1
35 27 29 posdifd φ¬P1<C0C0<P10<P-1-C0
36 34 35 mpbid φ¬P1<C00<P-1-C0
37 elnnz P-1-C0P-1-C00<P-1-C0
38 25 36 37 sylanbrc φ¬P1<C0P-1-C0
39 38 0expd φ¬P1<C00P-1-C0=0
40 14 39 eqtrd φ¬P1<C0JP-1-C0=0
41 40 oveq2d φ¬P1<C0P1!P-1-C0!JP-1-C0=P1!P-1-C0!0
42 nnm1nn0 PP10
43 1 42 syl φP10
44 43 faccld φP1!
45 44 nncnd φP1!
46 45 adantr φ¬P1<C0P1!
47 38 nnnn0d φ¬P1<C0P-1-C00
48 47 faccld φ¬P1<C0P-1-C0!
49 48 nncnd φ¬P1<C0P-1-C0!
50 48 nnne0d φ¬P1<C0P-1-C0!0
51 46 49 50 divcld φ¬P1<C0P1!P-1-C0!
52 51 mul01d φ¬P1<C0P1!P-1-C0!0=0
53 12 41 52 3eqtrd φ¬P1<C0ifP1<C00P1!P-1-C0!JP-1-C0=0
54 10 53 pm2.61dan φifP1<C00P1!P-1-C0!JP-1-C0=0
55 54 oveq1d φifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj=0j=1MifP<Cj0P!PCj!JjPCj
56 6 21 eqeltrd φJ0M
57 1 4 56 etransclem7 φj=1MifP<Cj0P!PCj!JjPCj
58 57 zcnd φj=1MifP<Cj0P!PCj!JjPCj
59 58 mul02d φ0j=1MifP<Cj0P!PCj!JjPCj=0
60 55 59 eqtrd φifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj=0
61 60 oveq2d φN!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj=N!j=0MCj!0
62 3 faccld φN!
63 62 nncnd φN!
64 fzfid φ0MFin
65 fzssnn0 0N0
66 4 ffvelcdmda φj0MCj0N
67 65 66 sselid φj0MCj0
68 67 faccld φj0MCj!
69 68 nncnd φj0MCj!
70 64 69 fprodcl φj=0MCj!
71 68 nnne0d φj0MCj!0
72 64 69 71 fprodn0 φj=0MCj!0
73 63 70 72 divcld φN!j=0MCj!
74 73 mul01d φN!j=0MCj!0=0
75 8 61 74 3eqtrd φT=0