Description: Lemma for eulerpart . Value of the sum of a finite partition A (Contributed by Thierry Arnoux, 19-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerpartlems.r | |
|
eulerpartlems.s | |
||
Assertion | eulerpartlemsv3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | |
|
2 | eulerpartlems.s | |
|
3 | 1 2 | eulerpartlemsv1 | |
4 | fzssuz | |
|
5 | nnuz | |
|
6 | 4 5 | sseqtrri | |
7 | 6 | a1i | |
8 | 1 2 | eulerpartlemelr | |
9 | 8 | simpld | |
10 | 9 | adantr | |
11 | 7 | sselda | |
12 | 10 11 | ffvelcdmd | |
13 | 12 | nn0cnd | |
14 | 11 | nncnd | |
15 | 13 14 | mulcld | |
16 | 1 2 | eulerpartlems | |
17 | 16 | ralrimiva | |
18 | fveqeq2 | |
|
19 | 18 | cbvralvw | |
20 | 17 19 | sylibr | |
21 | 1 2 | eulerpartlemsf | |
22 | 21 | ffvelcdmi | |
23 | nndiffz1 | |
|
24 | 22 23 | syl | |
25 | 24 | raleqdv | |
26 | 20 25 | mpbird | |
27 | 26 | r19.21bi | |
28 | 27 | oveq1d | |
29 | simpr | |
|
30 | 29 | eldifad | |
31 | 30 | nncnd | |
32 | 31 | mul02d | |
33 | 28 32 | eqtrd | |
34 | 5 | eqimssi | |
35 | 34 | a1i | |
36 | 7 15 33 35 | sumss | |
37 | 3 36 | eqtr4d | |