Metamath Proof Explorer


Theorem eulerpartlemsv3

Description: Lemma for eulerpart . Value of the sum of a finite partition A (Contributed by Thierry Arnoux, 19-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlemsv3 A0RSA=k=1SAAkk

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 1 2 eulerpartlemsv1 A0RSA=kAkk
4 fzssuz 1SA1
5 nnuz =1
6 4 5 sseqtrri 1SA
7 6 a1i A0R1SA
8 1 2 eulerpartlemelr A0RA:0A-1Fin
9 8 simpld A0RA:0
10 9 adantr A0Rk1SAA:0
11 7 sselda A0Rk1SAk
12 10 11 ffvelcdmd A0Rk1SAAk0
13 12 nn0cnd A0Rk1SAAk
14 11 nncnd A0Rk1SAk
15 13 14 mulcld A0Rk1SAAkk
16 1 2 eulerpartlems A0RtSA+1At=0
17 16 ralrimiva A0RtSA+1At=0
18 fveqeq2 k=tAk=0At=0
19 18 cbvralvw kSA+1Ak=0tSA+1At=0
20 17 19 sylibr A0RkSA+1Ak=0
21 1 2 eulerpartlemsf S:0R0
22 21 ffvelcdmi A0RSA0
23 nndiffz1 SA01SA=SA+1
24 22 23 syl A0R1SA=SA+1
25 24 raleqdv A0Rk1SAAk=0kSA+1Ak=0
26 20 25 mpbird A0Rk1SAAk=0
27 26 r19.21bi A0Rk1SAAk=0
28 27 oveq1d A0Rk1SAAkk=0k
29 simpr A0Rk1SAk1SA
30 29 eldifad A0Rk1SAk
31 30 nncnd A0Rk1SAk
32 31 mul02d A0Rk1SA0k=0
33 28 32 eqtrd A0Rk1SAAkk=0
34 5 eqimssi 1
35 34 a1i A0R1
36 7 15 33 35 sumss A0Rk=1SAAkk=kAkk
37 3 36 eqtr4d A0RSA=k=1SAAkk