Metamath Proof Explorer


Theorem evl1scvarpw

Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q = eval 1 R
evl1varpw.w W = Poly 1 R
evl1varpw.g G = mulGrp W
evl1varpw.x X = var 1 R
evl1varpw.b B = Base R
evl1varpw.e × ˙ = G
evl1varpw.r φ R CRing
evl1varpw.n φ N 0
evl1scvarpw.t1 × ˙ = W
evl1scvarpw.a φ A B
evl1scvarpw.s S = R 𝑠 B
evl1scvarpw.t2 ˙ = S
evl1scvarpw.m M = mulGrp S
evl1scvarpw.f F = M
Assertion evl1scvarpw φ Q A × ˙ N × ˙ X = B × A ˙ N F Q X

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q = eval 1 R
2 evl1varpw.w W = Poly 1 R
3 evl1varpw.g G = mulGrp W
4 evl1varpw.x X = var 1 R
5 evl1varpw.b B = Base R
6 evl1varpw.e × ˙ = G
7 evl1varpw.r φ R CRing
8 evl1varpw.n φ N 0
9 evl1scvarpw.t1 × ˙ = W
10 evl1scvarpw.a φ A B
11 evl1scvarpw.s S = R 𝑠 B
12 evl1scvarpw.t2 ˙ = S
13 evl1scvarpw.m M = mulGrp S
14 evl1scvarpw.f F = M
15 2 ply1assa R CRing W AssAlg
16 7 15 syl φ W AssAlg
17 10 5 eleqtrdi φ A Base R
18 2 ply1sca R CRing R = Scalar W
19 18 eqcomd R CRing Scalar W = R
20 7 19 syl φ Scalar W = R
21 20 fveq2d φ Base Scalar W = Base R
22 17 21 eleqtrrd φ A Base Scalar W
23 crngring R CRing R Ring
24 7 23 syl φ R Ring
25 2 ply1ring R Ring W Ring
26 24 25 syl φ W Ring
27 3 ringmgp W Ring G Mnd
28 26 27 syl φ G Mnd
29 eqid Base W = Base W
30 4 2 29 vr1cl R Ring X Base W
31 24 30 syl φ X Base W
32 3 29 mgpbas Base W = Base G
33 32 6 mulgnn0cl G Mnd N 0 X Base W N × ˙ X Base W
34 28 8 31 33 syl3anc φ N × ˙ X Base W
35 eqid algSc W = algSc W
36 eqid Scalar W = Scalar W
37 eqid Base Scalar W = Base Scalar W
38 eqid W = W
39 35 36 37 29 38 9 asclmul1 W AssAlg A Base Scalar W N × ˙ X Base W algSc W A W N × ˙ X = A × ˙ N × ˙ X
40 16 22 34 39 syl3anc φ algSc W A W N × ˙ X = A × ˙ N × ˙ X
41 40 eqcomd φ A × ˙ N × ˙ X = algSc W A W N × ˙ X
42 41 fveq2d φ Q A × ˙ N × ˙ X = Q algSc W A W N × ˙ X
43 1 2 11 5 evl1rhm R CRing Q W RingHom S
44 7 43 syl φ Q W RingHom S
45 2 ply1lmod R Ring W LMod
46 24 45 syl φ W LMod
47 35 36 26 46 37 29 asclf φ algSc W : Base Scalar W Base W
48 47 22 ffvelrnd φ algSc W A Base W
49 29 38 12 rhmmul Q W RingHom S algSc W A Base W N × ˙ X Base W Q algSc W A W N × ˙ X = Q algSc W A ˙ Q N × ˙ X
50 44 48 34 49 syl3anc φ Q algSc W A W N × ˙ X = Q algSc W A ˙ Q N × ˙ X
51 1 2 5 35 evl1sca R CRing A B Q algSc W A = B × A
52 7 10 51 syl2anc φ Q algSc W A = B × A
53 1 2 3 4 5 6 7 8 evl1varpw φ Q N × ˙ X = N mulGrp R 𝑠 B Q X
54 11 fveq2i mulGrp S = mulGrp R 𝑠 B
55 13 54 eqtri M = mulGrp R 𝑠 B
56 55 fveq2i M = mulGrp R 𝑠 B
57 14 56 eqtri F = mulGrp R 𝑠 B
58 57 a1i φ F = mulGrp R 𝑠 B
59 58 eqcomd φ mulGrp R 𝑠 B = F
60 59 oveqd φ N mulGrp R 𝑠 B Q X = N F Q X
61 53 60 eqtrd φ Q N × ˙ X = N F Q X
62 52 61 oveq12d φ Q algSc W A ˙ Q N × ˙ X = B × A ˙ N F Q X
63 42 50 62 3eqtrd φ Q A × ˙ N × ˙ X = B × A ˙ N F Q X