Metamath Proof Explorer


Theorem evl1scvarpw

Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q=eval1R
evl1varpw.w W=Poly1R
evl1varpw.g G=mulGrpW
evl1varpw.x X=var1R
evl1varpw.b B=BaseR
evl1varpw.e ×˙=G
evl1varpw.r φRCRing
evl1varpw.n φN0
evl1scvarpw.t1 ×˙=W
evl1scvarpw.a φAB
evl1scvarpw.s S=R𝑠B
evl1scvarpw.t2 ˙=S
evl1scvarpw.m M=mulGrpS
evl1scvarpw.f F=M
Assertion evl1scvarpw φQA×˙N×˙X=B×A˙NFQX

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q=eval1R
2 evl1varpw.w W=Poly1R
3 evl1varpw.g G=mulGrpW
4 evl1varpw.x X=var1R
5 evl1varpw.b B=BaseR
6 evl1varpw.e ×˙=G
7 evl1varpw.r φRCRing
8 evl1varpw.n φN0
9 evl1scvarpw.t1 ×˙=W
10 evl1scvarpw.a φAB
11 evl1scvarpw.s S=R𝑠B
12 evl1scvarpw.t2 ˙=S
13 evl1scvarpw.m M=mulGrpS
14 evl1scvarpw.f F=M
15 2 ply1assa RCRingWAssAlg
16 7 15 syl φWAssAlg
17 10 5 eleqtrdi φABaseR
18 2 ply1sca RCRingR=ScalarW
19 18 eqcomd RCRingScalarW=R
20 7 19 syl φScalarW=R
21 20 fveq2d φBaseScalarW=BaseR
22 17 21 eleqtrrd φABaseScalarW
23 eqid BaseW=BaseW
24 3 23 mgpbas BaseW=BaseG
25 crngring RCRingRRing
26 7 25 syl φRRing
27 2 ply1ring RRingWRing
28 26 27 syl φWRing
29 3 ringmgp WRingGMnd
30 28 29 syl φGMnd
31 4 2 23 vr1cl RRingXBaseW
32 26 31 syl φXBaseW
33 24 6 30 8 32 mulgnn0cld φN×˙XBaseW
34 eqid algScW=algScW
35 eqid ScalarW=ScalarW
36 eqid BaseScalarW=BaseScalarW
37 eqid W=W
38 34 35 36 23 37 9 asclmul1 WAssAlgABaseScalarWN×˙XBaseWalgScWAWN×˙X=A×˙N×˙X
39 16 22 33 38 syl3anc φalgScWAWN×˙X=A×˙N×˙X
40 39 eqcomd φA×˙N×˙X=algScWAWN×˙X
41 40 fveq2d φQA×˙N×˙X=QalgScWAWN×˙X
42 1 2 11 5 evl1rhm RCRingQWRingHomS
43 7 42 syl φQWRingHomS
44 2 ply1lmod RRingWLMod
45 26 44 syl φWLMod
46 34 35 28 45 36 23 asclf φalgScW:BaseScalarWBaseW
47 46 22 ffvelcdmd φalgScWABaseW
48 23 37 12 rhmmul QWRingHomSalgScWABaseWN×˙XBaseWQalgScWAWN×˙X=QalgScWA˙QN×˙X
49 43 47 33 48 syl3anc φQalgScWAWN×˙X=QalgScWA˙QN×˙X
50 1 2 5 34 evl1sca RCRingABQalgScWA=B×A
51 7 10 50 syl2anc φQalgScWA=B×A
52 1 2 3 4 5 6 7 8 evl1varpw φQN×˙X=NmulGrpR𝑠BQX
53 11 fveq2i mulGrpS=mulGrpR𝑠B
54 13 53 eqtri M=mulGrpR𝑠B
55 54 fveq2i M=mulGrpR𝑠B
56 14 55 eqtri F=mulGrpR𝑠B
57 56 a1i φF=mulGrpR𝑠B
58 57 eqcomd φmulGrpR𝑠B=F
59 58 oveqd φNmulGrpR𝑠BQX=NFQX
60 52 59 eqtrd φQN×˙X=NFQX
61 51 60 oveq12d φQalgScWA˙QN×˙X=B×A˙NFQX
62 41 49 61 3eqtrd φQA×˙N×˙X=B×A˙NFQX