Metamath Proof Explorer


Theorem evlsgsummul

Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsummul.q Q=IevalSubSR
evlsgsummul.w W=ImPolyU
evlsgsummul.g G=mulGrpW
evlsgsummul.1 1˙=1W
evlsgsummul.u U=S𝑠R
evlsgsummul.p P=S𝑠KI
evlsgsummul.h H=mulGrpP
evlsgsummul.k K=BaseS
evlsgsummul.b B=BaseW
evlsgsummul.i φIV
evlsgsummul.s φSCRing
evlsgsummul.r φRSubRingS
evlsgsummul.y φxNYB
evlsgsummul.n φN0
evlsgsummul.f φfinSupp1˙xNY
Assertion evlsgsummul φQGxNY=HxNQY

Proof

Step Hyp Ref Expression
1 evlsgsummul.q Q=IevalSubSR
2 evlsgsummul.w W=ImPolyU
3 evlsgsummul.g G=mulGrpW
4 evlsgsummul.1 1˙=1W
5 evlsgsummul.u U=S𝑠R
6 evlsgsummul.p P=S𝑠KI
7 evlsgsummul.h H=mulGrpP
8 evlsgsummul.k K=BaseS
9 evlsgsummul.b B=BaseW
10 evlsgsummul.i φIV
11 evlsgsummul.s φSCRing
12 evlsgsummul.r φRSubRingS
13 evlsgsummul.y φxNYB
14 evlsgsummul.n φN0
15 evlsgsummul.f φfinSupp1˙xNY
16 3 9 mgpbas B=BaseG
17 3 4 ringidval 1˙=0G
18 5 subrgcrng SCRingRSubRingSUCRing
19 11 12 18 syl2anc φUCRing
20 2 mplcrng IVUCRingWCRing
21 10 19 20 syl2anc φWCRing
22 3 crngmgp WCRingGCMnd
23 21 22 syl φGCMnd
24 crngring SCRingSRing
25 11 24 syl φSRing
26 ovex KIV
27 25 26 jctir φSRingKIV
28 6 pwsring SRingKIVPRing
29 7 ringmgp PRingHMnd
30 27 28 29 3syl φHMnd
31 nn0ex 0V
32 31 a1i φ0V
33 32 14 ssexd φNV
34 1 2 5 6 8 evlsrhm IVSCRingRSubRingSQWRingHomP
35 10 11 12 34 syl3anc φQWRingHomP
36 3 7 rhmmhm QWRingHomPQGMndHomH
37 35 36 syl φQGMndHomH
38 16 17 23 30 33 37 13 15 gsummptmhm φHxNQY=QGxNY
39 38 eqcomd φQGxNY=HxNQY