Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsgsummul.q | |
|
evlsgsummul.w | |
||
evlsgsummul.g | |
||
evlsgsummul.1 | |
||
evlsgsummul.u | |
||
evlsgsummul.p | |
||
evlsgsummul.h | |
||
evlsgsummul.k | |
||
evlsgsummul.b | |
||
evlsgsummul.i | |
||
evlsgsummul.s | |
||
evlsgsummul.r | |
||
evlsgsummul.y | |
||
evlsgsummul.n | |
||
evlsgsummul.f | |
||
Assertion | evlsgsummul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsgsummul.q | |
|
2 | evlsgsummul.w | |
|
3 | evlsgsummul.g | |
|
4 | evlsgsummul.1 | |
|
5 | evlsgsummul.u | |
|
6 | evlsgsummul.p | |
|
7 | evlsgsummul.h | |
|
8 | evlsgsummul.k | |
|
9 | evlsgsummul.b | |
|
10 | evlsgsummul.i | |
|
11 | evlsgsummul.s | |
|
12 | evlsgsummul.r | |
|
13 | evlsgsummul.y | |
|
14 | evlsgsummul.n | |
|
15 | evlsgsummul.f | |
|
16 | 3 9 | mgpbas | |
17 | 3 4 | ringidval | |
18 | 5 | subrgcrng | |
19 | 11 12 18 | syl2anc | |
20 | 2 | mplcrng | |
21 | 10 19 20 | syl2anc | |
22 | 3 | crngmgp | |
23 | 21 22 | syl | |
24 | crngring | |
|
25 | 11 24 | syl | |
26 | ovex | |
|
27 | 25 26 | jctir | |
28 | 6 | pwsring | |
29 | 7 | ringmgp | |
30 | 27 28 29 | 3syl | |
31 | nn0ex | |
|
32 | 31 | a1i | |
33 | 32 14 | ssexd | |
34 | 1 2 5 6 8 | evlsrhm | |
35 | 10 11 12 34 | syl3anc | |
36 | 3 7 | rhmmhm | |
37 | 35 36 | syl | |
38 | 16 17 23 30 33 37 13 15 | gsummptmhm | |
39 | 38 | eqcomd | |