Metamath Proof Explorer


Theorem evlslem6

Description: Lemma for evlseu . Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem1.p P=ImPolyR
evlslem1.b B=BaseP
evlslem1.c C=BaseS
evlslem1.d D=h0I|h-1Fin
evlslem1.t T=mulGrpS
evlslem1.x ×˙=T
evlslem1.m ·˙=S
evlslem1.v V=ImVarR
evlslem1.e E=pBSbDFpb·˙Tb×˙fG
evlslem1.i φIW
evlslem1.r φRCRing
evlslem1.s φSCRing
evlslem1.f φFRRingHomS
evlslem1.g φG:IC
evlslem6.y φYB
Assertion evlslem6 φbDFYb·˙Tb×˙fG:DCfinSupp0SbDFYb·˙Tb×˙fG

Proof

Step Hyp Ref Expression
1 evlslem1.p P=ImPolyR
2 evlslem1.b B=BaseP
3 evlslem1.c C=BaseS
4 evlslem1.d D=h0I|h-1Fin
5 evlslem1.t T=mulGrpS
6 evlslem1.x ×˙=T
7 evlslem1.m ·˙=S
8 evlslem1.v V=ImVarR
9 evlslem1.e E=pBSbDFpb·˙Tb×˙fG
10 evlslem1.i φIW
11 evlslem1.r φRCRing
12 evlslem1.s φSCRing
13 evlslem1.f φFRRingHomS
14 evlslem1.g φG:IC
15 evlslem6.y φYB
16 crngring SCRingSRing
17 12 16 syl φSRing
18 17 adantr φbDSRing
19 eqid BaseR=BaseR
20 19 3 rhmf FRRingHomSF:BaseRC
21 13 20 syl φF:BaseRC
22 21 adantr φbDF:BaseRC
23 1 19 2 4 15 mplelf φY:DBaseR
24 23 ffvelcdmda φbDYbBaseR
25 22 24 ffvelcdmd φbDFYbC
26 5 3 mgpbas C=BaseT
27 5 crngmgp SCRingTCMnd
28 12 27 syl φTCMnd
29 28 adantr φbDTCMnd
30 simpr φbDbD
31 14 adantr φbDG:IC
32 4 26 6 29 30 31 psrbagev2 φbDTb×˙fGC
33 3 7 ringcl SRingFYbCTb×˙fGCFYb·˙Tb×˙fGC
34 18 25 32 33 syl3anc φbDFYb·˙Tb×˙fGC
35 34 fmpttd φbDFYb·˙Tb×˙fG:DC
36 ovexd φ0IV
37 4 36 rabexd φDV
38 37 mptexd φbDFYb·˙Tb×˙fGV
39 funmpt FunbDFYb·˙Tb×˙fG
40 39 a1i φFunbDFYb·˙Tb×˙fG
41 fvexd φ0SV
42 eqid 0R=0R
43 1 2 42 15 11 mplelsfi φfinSupp0RY
44 43 fsuppimpd φYsupp0RFin
45 23 feqmptd φY=bDYb
46 45 oveq1d φYsupp0R=bDYbsupp0R
47 eqimss2 Ysupp0R=bDYbsupp0RbDYbsupp0RYsupp0R
48 46 47 syl φbDYbsupp0RYsupp0R
49 rhmghm FRRingHomSFRGrpHomS
50 eqid 0S=0S
51 42 50 ghmid FRGrpHomSF0R=0S
52 13 49 51 3syl φF0R=0S
53 fvexd φbDYbV
54 fvexd φ0RV
55 48 52 53 54 suppssfv φbDFYbsupp0SYsupp0R
56 3 7 50 ringlz SRingxC0S·˙x=0S
57 17 56 sylan φxC0S·˙x=0S
58 fvexd φbDFYbV
59 55 57 58 32 41 suppssov1 φbDFYb·˙Tb×˙fGsupp0SYsupp0R
60 suppssfifsupp bDFYb·˙Tb×˙fGVFunbDFYb·˙Tb×˙fG0SVYsupp0RFinbDFYb·˙Tb×˙fGsupp0SYsupp0RfinSupp0SbDFYb·˙Tb×˙fG
61 38 40 41 44 59 60 syl32anc φfinSupp0SbDFYb·˙Tb×˙fG
62 35 61 jca φbDFYb·˙Tb×˙fG:DCfinSupp0SbDFYb·˙Tb×˙fG