Metamath Proof Explorer


Theorem evlssca

Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlssca.q Q=IevalSubSR
evlssca.w W=ImPolyU
evlssca.u U=S𝑠R
evlssca.b B=BaseS
evlssca.a A=algScW
evlssca.i φIV
evlssca.s φSCRing
evlssca.r φRSubRingS
evlssca.x φXR
Assertion evlssca φQAX=BI×X

Proof

Step Hyp Ref Expression
1 evlssca.q Q=IevalSubSR
2 evlssca.w W=ImPolyU
3 evlssca.u U=S𝑠R
4 evlssca.b B=BaseS
5 evlssca.a A=algScW
6 evlssca.i φIV
7 evlssca.s φSCRing
8 evlssca.r φRSubRingS
9 evlssca.x φXR
10 eqid ImVarU=ImVarU
11 eqid S𝑠BI=S𝑠BI
12 eqid xRBI×x=xRBI×x
13 eqid xIyBIyx=xIyBIyx
14 1 2 10 3 11 4 5 12 13 evlsval2 IVSCRingRSubRingSQWRingHomS𝑠BIQA=xRBI×xQImVarU=xIyBIyx
15 6 7 8 14 syl3anc φQWRingHomS𝑠BIQA=xRBI×xQImVarU=xIyBIyx
16 15 simprld φQA=xRBI×x
17 16 fveq1d φQAX=xRBI×xX
18 eqid BaseW=BaseW
19 eqid BaseU=BaseU
20 3 subrgring RSubRingSURing
21 8 20 syl φURing
22 2 18 19 5 6 21 mplasclf φA:BaseUBaseW
23 4 subrgss RSubRingSRB
24 3 4 ressbas2 RBR=BaseU
25 8 23 24 3syl φR=BaseU
26 25 feq2d φA:RBaseWA:BaseUBaseW
27 22 26 mpbird φA:RBaseW
28 fvco3 A:RBaseWXRQAX=QAX
29 27 9 28 syl2anc φQAX=QAX
30 sneq x=Xx=X
31 30 xpeq2d x=XBI×x=BI×X
32 ovex BIV
33 snex XV
34 32 33 xpex BI×XV
35 31 12 34 fvmpt XRxRBI×xX=BI×X
36 9 35 syl φxRBI×xX=BI×X
37 17 29 36 3eqtr3d φQAX=BI×X