Metamath Proof Explorer


Theorem evlssca

Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlssca.q Q = I evalSub S R
evlssca.w W = I mPoly U
evlssca.u U = S 𝑠 R
evlssca.b B = Base S
evlssca.a A = algSc W
evlssca.i φ I V
evlssca.s φ S CRing
evlssca.r φ R SubRing S
evlssca.x φ X R
Assertion evlssca φ Q A X = B I × X

Proof

Step Hyp Ref Expression
1 evlssca.q Q = I evalSub S R
2 evlssca.w W = I mPoly U
3 evlssca.u U = S 𝑠 R
4 evlssca.b B = Base S
5 evlssca.a A = algSc W
6 evlssca.i φ I V
7 evlssca.s φ S CRing
8 evlssca.r φ R SubRing S
9 evlssca.x φ X R
10 eqid I mVar U = I mVar U
11 eqid S 𝑠 B I = S 𝑠 B I
12 eqid x R B I × x = x R B I × x
13 eqid x I y B I y x = x I y B I y x
14 1 2 10 3 11 4 5 12 13 evlsval2 I V S CRing R SubRing S Q W RingHom S 𝑠 B I Q A = x R B I × x Q I mVar U = x I y B I y x
15 6 7 8 14 syl3anc φ Q W RingHom S 𝑠 B I Q A = x R B I × x Q I mVar U = x I y B I y x
16 15 simprld φ Q A = x R B I × x
17 16 fveq1d φ Q A X = x R B I × x X
18 eqid Base W = Base W
19 eqid Base U = Base U
20 3 subrgring R SubRing S U Ring
21 8 20 syl φ U Ring
22 2 18 19 5 6 21 mplasclf φ A : Base U Base W
23 4 subrgss R SubRing S R B
24 3 4 ressbas2 R B R = Base U
25 8 23 24 3syl φ R = Base U
26 25 feq2d φ A : R Base W A : Base U Base W
27 22 26 mpbird φ A : R Base W
28 fvco3 A : R Base W X R Q A X = Q A X
29 27 9 28 syl2anc φ Q A X = Q A X
30 sneq x = X x = X
31 30 xpeq2d x = X B I × x = B I × X
32 ovex B I V
33 snex X V
34 32 33 xpex B I × X V
35 31 12 34 fvmpt X R x R B I × x X = B I × X
36 9 35 syl φ x R B I × x X = B I × X
37 17 29 36 3eqtr3d φ Q A X = B I × X