Description: Specialization of the Extreme Value Theorem to a closed interval of RR . (Contributed by Mario Carneiro, 12-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evthicc.1 | |
|
evthicc.2 | |
||
evthicc.3 | |
||
evthicc.4 | |
||
Assertion | evthicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evthicc.1 | |
|
2 | evthicc.2 | |
|
3 | evthicc.3 | |
|
4 | evthicc.4 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | icccmp | |
9 | 1 2 8 | syl2anc | |
10 | iccssre | |
|
11 | 1 2 10 | syl2anc | |
12 | ax-resscn | |
|
13 | 11 12 | sstrdi | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 15 17 | tgioo | |
19 | 14 15 16 18 | cncfmet | |
20 | 13 12 19 | sylancl | |
21 | 6 16 | resubmet | |
22 | 11 21 | syl | |
23 | 22 | oveq1d | |
24 | 20 23 | eqtrd | |
25 | 4 24 | eleqtrd | |
26 | retop | |
|
27 | uniretop | |
|
28 | 27 | restuni | |
29 | 26 11 28 | sylancr | |
30 | 1 | rexrd | |
31 | 2 | rexrd | |
32 | lbicc2 | |
|
33 | 30 31 3 32 | syl3anc | |
34 | 33 | ne0d | |
35 | 29 34 | eqnetrrd | |
36 | 5 6 9 25 35 | evth | |
37 | 29 | raleqdv | |
38 | 29 37 | rexeqbidv | |
39 | 36 38 | mpbird | |
40 | 5 6 9 25 35 | evth2 | |
41 | 29 | raleqdv | |
42 | 29 41 | rexeqbidv | |
43 | 40 42 | mpbird | |
44 | 39 43 | jca | |