Metamath Proof Explorer


Theorem evthicc2

Description: Combine ivthicc with evthicc to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses evthicc.1 φA
evthicc.2 φB
evthicc.3 φAB
evthicc.4 φF:ABcn
Assertion evthicc2 φxyranF=xy

Proof

Step Hyp Ref Expression
1 evthicc.1 φA
2 evthicc.2 φB
3 evthicc.3 φAB
4 evthicc.4 φF:ABcn
5 1 2 3 4 evthicc φaABzABFzFabABzABFbFz
6 reeanv aABbABzABFzFazABFbFzaABzABFzFabABzABFbFz
7 5 6 sylibr φaABbABzABFzFazABFbFz
8 r19.26 zABFzFaFbFzzABFzFazABFbFz
9 4 adantr φaABbABF:ABcn
10 cncff F:ABcnF:AB
11 9 10 syl φaABbABF:AB
12 simprr φaABbABbAB
13 11 12 ffvelcdmd φaABbABFb
14 13 adantr φaABbABzABFzFaFbFzFb
15 simprl φaABbABaAB
16 11 15 ffvelcdmd φaABbABFa
17 16 adantr φaABbABzABFzFaFbFzFa
18 11 adantr φaABbABzABFzFaFbFzF:AB
19 18 ffnd φaABbABzABFzFaFbFzFFnAB
20 16 adantr φaABbABzABFa
21 elicc2 FbFaFzFbFaFzFbFzFzFa
22 13 20 21 syl2an2r φaABbABzABFzFbFaFzFbFzFzFa
23 3anass FzFbFzFzFaFzFbFzFzFa
24 22 23 bitrdi φaABbABzABFzFbFaFzFbFzFzFa
25 ancom FzFaFbFzFbFzFzFa
26 11 ffvelcdmda φaABbABzABFz
27 26 biantrurd φaABbABzABFbFzFzFaFzFbFzFzFa
28 25 27 bitrid φaABbABzABFzFaFbFzFzFbFzFzFa
29 24 28 bitr4d φaABbABzABFzFbFaFzFaFbFz
30 29 ralbidva φaABbABzABFzFbFazABFzFaFbFz
31 30 biimpar φaABbABzABFzFaFbFzzABFzFbFa
32 ffnfv F:ABFbFaFFnABzABFzFbFa
33 19 31 32 sylanbrc φaABbABzABFzFaFbFzF:ABFbFa
34 33 frnd φaABbABzABFzFaFbFzranFFbFa
35 1 adantr φaABbABA
36 2 adantr φaABbABB
37 ssidd φaABbABABAB
38 ax-resscn
39 ssid
40 cncfss ABcnABcn
41 38 39 40 mp2an ABcnABcn
42 41 9 sselid φaABbABF:ABcn
43 11 ffvelcdmda φaABbABxABFx
44 35 36 12 15 37 42 43 ivthicc φaABbABFbFaranF
45 44 adantr φaABbABzABFzFaFbFzFbFaranF
46 34 45 eqssd φaABbABzABFzFaFbFzranF=FbFa
47 rspceov FbFaranF=FbFaxyranF=xy
48 14 17 46 47 syl3anc φaABbABzABFzFaFbFzxyranF=xy
49 48 ex φaABbABzABFzFaFbFzxyranF=xy
50 8 49 biimtrrid φaABbABzABFzFazABFbFzxyranF=xy
51 50 rexlimdvva φaABbABzABFzFazABFbFzxyranF=xy
52 7 51 mpd φxyranF=xy