| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthicc.1 |
|
| 2 |
|
evthicc.2 |
|
| 3 |
|
evthicc.3 |
|
| 4 |
|
evthicc.4 |
|
| 5 |
1 2 3 4
|
evthicc |
|
| 6 |
|
reeanv |
|
| 7 |
5 6
|
sylibr |
|
| 8 |
|
r19.26 |
|
| 9 |
4
|
adantr |
|
| 10 |
|
cncff |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simprr |
|
| 13 |
11 12
|
ffvelcdmd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
11 15
|
ffvelcdmd |
|
| 17 |
16
|
adantr |
|
| 18 |
11
|
adantr |
|
| 19 |
18
|
ffnd |
|
| 20 |
16
|
adantr |
|
| 21 |
|
elicc2 |
|
| 22 |
13 20 21
|
syl2an2r |
|
| 23 |
|
3anass |
|
| 24 |
22 23
|
bitrdi |
|
| 25 |
|
ancom |
|
| 26 |
11
|
ffvelcdmda |
|
| 27 |
26
|
biantrurd |
|
| 28 |
25 27
|
bitrid |
|
| 29 |
24 28
|
bitr4d |
|
| 30 |
29
|
ralbidva |
|
| 31 |
30
|
biimpar |
|
| 32 |
|
ffnfv |
|
| 33 |
19 31 32
|
sylanbrc |
|
| 34 |
33
|
frnd |
|
| 35 |
1
|
adantr |
|
| 36 |
2
|
adantr |
|
| 37 |
|
ssidd |
|
| 38 |
|
ax-resscn |
|
| 39 |
|
ssid |
|
| 40 |
|
cncfss |
|
| 41 |
38 39 40
|
mp2an |
|
| 42 |
41 9
|
sselid |
|
| 43 |
11
|
ffvelcdmda |
|
| 44 |
35 36 12 15 37 42 43
|
ivthicc |
|
| 45 |
44
|
adantr |
|
| 46 |
34 45
|
eqssd |
|
| 47 |
|
rspceov |
|
| 48 |
14 17 46 47
|
syl3anc |
|
| 49 |
48
|
ex |
|
| 50 |
8 49
|
biimtrrid |
|
| 51 |
50
|
rexlimdvva |
|
| 52 |
7 51
|
mpd |
|