Description: Combine ivthicc with evthicc to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evthicc.1 | |
|
evthicc.2 | |
||
evthicc.3 | |
||
evthicc.4 | |
||
Assertion | evthicc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evthicc.1 | |
|
2 | evthicc.2 | |
|
3 | evthicc.3 | |
|
4 | evthicc.4 | |
|
5 | 1 2 3 4 | evthicc | |
6 | reeanv | |
|
7 | 5 6 | sylibr | |
8 | r19.26 | |
|
9 | 4 | adantr | |
10 | cncff | |
|
11 | 9 10 | syl | |
12 | simprr | |
|
13 | 11 12 | ffvelcdmd | |
14 | 13 | adantr | |
15 | simprl | |
|
16 | 11 15 | ffvelcdmd | |
17 | 16 | adantr | |
18 | 11 | adantr | |
19 | 18 | ffnd | |
20 | 16 | adantr | |
21 | elicc2 | |
|
22 | 13 20 21 | syl2an2r | |
23 | 3anass | |
|
24 | 22 23 | bitrdi | |
25 | ancom | |
|
26 | 11 | ffvelcdmda | |
27 | 26 | biantrurd | |
28 | 25 27 | bitrid | |
29 | 24 28 | bitr4d | |
30 | 29 | ralbidva | |
31 | 30 | biimpar | |
32 | ffnfv | |
|
33 | 19 31 32 | sylanbrc | |
34 | 33 | frnd | |
35 | 1 | adantr | |
36 | 2 | adantr | |
37 | ssidd | |
|
38 | ax-resscn | |
|
39 | ssid | |
|
40 | cncfss | |
|
41 | 38 39 40 | mp2an | |
42 | 41 9 | sselid | |
43 | 11 | ffvelcdmda | |
44 | 35 36 12 15 37 42 43 | ivthicc | |
45 | 44 | adantr | |
46 | 34 45 | eqssd | |
47 | rspceov | |
|
48 | 14 17 46 47 | syl3anc | |
49 | 48 | ex | |
50 | 8 49 | biimtrrid | |
51 | 50 | rexlimdvva | |
52 | 7 51 | mpd | |