Description: If the converse of a relation A is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | fcnvgreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn | |
|
2 | 1 | eleq2i | |
3 | fgreu | |
|
4 | 3 | adantll | |
5 | 2 4 | sylan2b | |
6 | cnvcnvss | |
|
7 | cnvssrndm | |
|
8 | 7 | sseli | |
9 | dfdm4 | |
|
10 | 1 9 | xpeq12i | |
11 | 8 10 | eleqtrdi | |
12 | 2nd1st | |
|
13 | 11 12 | syl | |
14 | 13 | eqcomd | |
15 | relcnv | |
|
16 | cnvf1olem | |
|
17 | 16 | simpld | |
18 | 15 17 | mpan | |
19 | 14 18 | mpdan | |
20 | 6 19 | sselid | |
21 | 20 | adantl | |
22 | simpll | |
|
23 | simpr | |
|
24 | relssdmrn | |
|
25 | 24 | adantr | |
26 | 25 | sselda | |
27 | 2nd1st | |
|
28 | 26 27 | syl | |
29 | 28 | eqcomd | |
30 | cnvf1olem | |
|
31 | 30 | simpld | |
32 | 22 23 29 31 | syl12anc | |
33 | 15 | a1i | |
34 | simplr | |
|
35 | 14 | ad2antlr | |
36 | 16 | simprd | |
37 | 33 34 35 36 | syl12anc | |
38 | simpr | |
|
39 | 38 | sneqd | |
40 | 39 | cnveqd | |
41 | 40 | unieqd | |
42 | 28 | ad2antrr | |
43 | 37 41 42 | 3eqtr2d | |
44 | 30 | simprd | |
45 | 22 23 29 44 | syl12anc | |
46 | 45 | ad2antrr | |
47 | simpr | |
|
48 | 47 | sneqd | |
49 | 48 | cnveqd | |
50 | 49 | unieqd | |
51 | 13 | ad2antlr | |
52 | 46 50 51 | 3eqtr2d | |
53 | 43 52 | impbida | |
54 | 53 | ralrimiva | |
55 | eqeq2 | |
|
56 | 55 | bibi2d | |
57 | 56 | ralbidv | |
58 | 57 | rspcev | |
59 | 32 54 58 | syl2anc | |
60 | reu6 | |
|
61 | 59 60 | sylibr | |
62 | fvex | |
|
63 | fvex | |
|
64 | 62 63 | op2ndd | |
65 | 64 | eqeq2d | |
66 | 65 | adantl | |
67 | 21 61 66 | reuxfr1d | |
68 | 67 | adantr | |
69 | 5 68 | mpbird | |