Metamath Proof Explorer


Theorem fcnvgreu

Description: If the converse of a relation A is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion fcnvgreu RelAFunA-1YranA∃!pAY=2ndp

Proof

Step Hyp Ref Expression
1 df-rn ranA=domA-1
2 1 eleq2i YranAYdomA-1
3 fgreu FunA-1YdomA-1∃!qA-1Y=1stq
4 3 adantll RelAFunA-1YdomA-1∃!qA-1Y=1stq
5 2 4 sylan2b RelAFunA-1YranA∃!qA-1Y=1stq
6 cnvcnvss A-1-1A
7 cnvssrndm A-1ranA×domA
8 7 sseli qA-1qranA×domA
9 dfdm4 domA=ranA-1
10 1 9 xpeq12i ranA×domA=domA-1×ranA-1
11 8 10 eleqtrdi qA-1qdomA-1×ranA-1
12 2nd1st qdomA-1×ranA-1q-1=2ndq1stq
13 11 12 syl qA-1q-1=2ndq1stq
14 13 eqcomd qA-12ndq1stq=q-1
15 relcnv RelA-1
16 cnvf1olem RelA-1qA-12ndq1stq=q-12ndq1stqA-1-1q=2ndq1stq-1
17 16 simpld RelA-1qA-12ndq1stq=q-12ndq1stqA-1-1
18 15 17 mpan qA-12ndq1stq=q-12ndq1stqA-1-1
19 14 18 mpdan qA-12ndq1stqA-1-1
20 6 19 sselid qA-12ndq1stqA
21 20 adantl RelAFunA-1qA-12ndq1stqA
22 simpll RelAFunA-1pARelA
23 simpr RelAFunA-1pApA
24 relssdmrn RelAAdomA×ranA
25 24 adantr RelAFunA-1AdomA×ranA
26 25 sselda RelAFunA-1pApdomA×ranA
27 2nd1st pdomA×ranAp-1=2ndp1stp
28 26 27 syl RelAFunA-1pAp-1=2ndp1stp
29 28 eqcomd RelAFunA-1pA2ndp1stp=p-1
30 cnvf1olem RelApA2ndp1stp=p-12ndp1stpA-1p=2ndp1stp-1
31 30 simpld RelApA2ndp1stp=p-12ndp1stpA-1
32 22 23 29 31 syl12anc RelAFunA-1pA2ndp1stpA-1
33 15 a1i RelAFunA-1pAqA-1p=2ndq1stqRelA-1
34 simplr RelAFunA-1pAqA-1p=2ndq1stqqA-1
35 14 ad2antlr RelAFunA-1pAqA-1p=2ndq1stq2ndq1stq=q-1
36 16 simprd RelA-1qA-12ndq1stq=q-1q=2ndq1stq-1
37 33 34 35 36 syl12anc RelAFunA-1pAqA-1p=2ndq1stqq=2ndq1stq-1
38 simpr RelAFunA-1pAqA-1p=2ndq1stqp=2ndq1stq
39 38 sneqd RelAFunA-1pAqA-1p=2ndq1stqp=2ndq1stq
40 39 cnveqd RelAFunA-1pAqA-1p=2ndq1stqp-1=2ndq1stq-1
41 40 unieqd RelAFunA-1pAqA-1p=2ndq1stqp-1=2ndq1stq-1
42 28 ad2antrr RelAFunA-1pAqA-1p=2ndq1stqp-1=2ndp1stp
43 37 41 42 3eqtr2d RelAFunA-1pAqA-1p=2ndq1stqq=2ndp1stp
44 30 simprd RelApA2ndp1stp=p-1p=2ndp1stp-1
45 22 23 29 44 syl12anc RelAFunA-1pAp=2ndp1stp-1
46 45 ad2antrr RelAFunA-1pAqA-1q=2ndp1stpp=2ndp1stp-1
47 simpr RelAFunA-1pAqA-1q=2ndp1stpq=2ndp1stp
48 47 sneqd RelAFunA-1pAqA-1q=2ndp1stpq=2ndp1stp
49 48 cnveqd RelAFunA-1pAqA-1q=2ndp1stpq-1=2ndp1stp-1
50 49 unieqd RelAFunA-1pAqA-1q=2ndp1stpq-1=2ndp1stp-1
51 13 ad2antlr RelAFunA-1pAqA-1q=2ndp1stpq-1=2ndq1stq
52 46 50 51 3eqtr2d RelAFunA-1pAqA-1q=2ndp1stpp=2ndq1stq
53 43 52 impbida RelAFunA-1pAqA-1p=2ndq1stqq=2ndp1stp
54 53 ralrimiva RelAFunA-1pAqA-1p=2ndq1stqq=2ndp1stp
55 eqeq2 r=2ndp1stpq=rq=2ndp1stp
56 55 bibi2d r=2ndp1stpp=2ndq1stqq=rp=2ndq1stqq=2ndp1stp
57 56 ralbidv r=2ndp1stpqA-1p=2ndq1stqq=rqA-1p=2ndq1stqq=2ndp1stp
58 57 rspcev 2ndp1stpA-1qA-1p=2ndq1stqq=2ndp1stprA-1qA-1p=2ndq1stqq=r
59 32 54 58 syl2anc RelAFunA-1pArA-1qA-1p=2ndq1stqq=r
60 reu6 ∃!qA-1p=2ndq1stqrA-1qA-1p=2ndq1stqq=r
61 59 60 sylibr RelAFunA-1pA∃!qA-1p=2ndq1stq
62 fvex 2ndqV
63 fvex 1stqV
64 62 63 op2ndd p=2ndq1stq2ndp=1stq
65 64 eqeq2d p=2ndq1stqY=2ndpY=1stq
66 65 adantl RelAFunA-1p=2ndq1stqY=2ndpY=1stq
67 21 61 66 reuxfr1d RelAFunA-1∃!pAY=2ndp∃!qA-1Y=1stq
68 67 adantr RelAFunA-1YranA∃!pAY=2ndp∃!qA-1Y=1stq
69 5 68 mpbird RelAFunA-1YranA∃!pAY=2ndp