| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fthmon.b |  | 
						
							| 2 |  | fthmon.h |  | 
						
							| 3 |  | fthmon.f |  | 
						
							| 4 |  | fthmon.x |  | 
						
							| 5 |  | fthmon.y |  | 
						
							| 6 |  | fthmon.r |  | 
						
							| 7 |  | ffthiso.f |  | 
						
							| 8 |  | ffthiso.s |  | 
						
							| 9 |  | ffthiso.t |  | 
						
							| 10 |  | fthfunc |  | 
						
							| 11 | 10 | ssbri |  | 
						
							| 12 | 3 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 4 | adantr |  | 
						
							| 15 | 5 | adantr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 1 8 9 13 14 15 16 | funciso |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | df-br |  | 
						
							| 20 | 12 19 | sylib |  | 
						
							| 21 |  | funcrcl |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 22 | simpld |  | 
						
							| 24 | 23 | ad3antrrr |  | 
						
							| 25 | 4 | ad3antrrr |  | 
						
							| 26 | 5 | ad3antrrr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 22 | simprd |  | 
						
							| 30 | 1 27 12 | funcf1 |  | 
						
							| 31 | 30 4 | ffvelcdmd |  | 
						
							| 32 | 30 5 | ffvelcdmd |  | 
						
							| 33 | 27 28 29 31 32 9 | isoval |  | 
						
							| 34 | 33 | eleq2d |  | 
						
							| 35 | 34 | biimpa |  | 
						
							| 36 | 27 28 29 31 32 | invfun |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | funfvbrb |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 35 39 | mpbid |  | 
						
							| 41 | 40 | ad2antrr |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 41 42 | breqtrd |  | 
						
							| 44 | 3 | ad3antrrr |  | 
						
							| 45 | 6 | ad3antrrr |  | 
						
							| 46 |  | simplr |  | 
						
							| 47 | 1 2 44 25 26 45 46 18 28 | fthinv |  | 
						
							| 48 | 43 47 | mpbird |  | 
						
							| 49 | 1 18 24 25 26 8 48 | inviso1 |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 7 | adantr |  | 
						
							| 52 | 5 | adantr |  | 
						
							| 53 | 4 | adantr |  | 
						
							| 54 | 27 50 9 29 32 31 | isohom |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 27 28 29 31 32 9 | invf |  | 
						
							| 57 | 56 | ffvelcdmda |  | 
						
							| 58 | 55 57 | sseldd |  | 
						
							| 59 | 1 50 2 51 52 53 58 | fulli |  | 
						
							| 60 | 49 59 | r19.29a |  | 
						
							| 61 | 17 60 | impbida |  |