Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of Adamek p. 35. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fthmon.b | |
|
fthmon.h | |
||
fthmon.f | |
||
fthmon.x | |
||
fthmon.y | |
||
fthmon.r | |
||
ffthiso.f | |
||
ffthiso.s | |
||
ffthiso.t | |
||
Assertion | ffthiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthmon.b | |
|
2 | fthmon.h | |
|
3 | fthmon.f | |
|
4 | fthmon.x | |
|
5 | fthmon.y | |
|
6 | fthmon.r | |
|
7 | ffthiso.f | |
|
8 | ffthiso.s | |
|
9 | ffthiso.t | |
|
10 | fthfunc | |
|
11 | 10 | ssbri | |
12 | 3 11 | syl | |
13 | 12 | adantr | |
14 | 4 | adantr | |
15 | 5 | adantr | |
16 | simpr | |
|
17 | 1 8 9 13 14 15 16 | funciso | |
18 | eqid | |
|
19 | df-br | |
|
20 | 12 19 | sylib | |
21 | funcrcl | |
|
22 | 20 21 | syl | |
23 | 22 | simpld | |
24 | 23 | ad3antrrr | |
25 | 4 | ad3antrrr | |
26 | 5 | ad3antrrr | |
27 | eqid | |
|
28 | eqid | |
|
29 | 22 | simprd | |
30 | 1 27 12 | funcf1 | |
31 | 30 4 | ffvelcdmd | |
32 | 30 5 | ffvelcdmd | |
33 | 27 28 29 31 32 9 | isoval | |
34 | 33 | eleq2d | |
35 | 34 | biimpa | |
36 | 27 28 29 31 32 | invfun | |
37 | 36 | adantr | |
38 | funfvbrb | |
|
39 | 37 38 | syl | |
40 | 35 39 | mpbid | |
41 | 40 | ad2antrr | |
42 | simpr | |
|
43 | 41 42 | breqtrd | |
44 | 3 | ad3antrrr | |
45 | 6 | ad3antrrr | |
46 | simplr | |
|
47 | 1 2 44 25 26 45 46 18 28 | fthinv | |
48 | 43 47 | mpbird | |
49 | 1 18 24 25 26 8 48 | inviso1 | |
50 | eqid | |
|
51 | 7 | adantr | |
52 | 5 | adantr | |
53 | 4 | adantr | |
54 | 27 50 9 29 32 31 | isohom | |
55 | 54 | adantr | |
56 | 27 28 29 31 32 9 | invf | |
57 | 56 | ffvelcdmda | |
58 | 55 57 | sseldd | |
59 | 1 50 2 51 52 53 58 | fulli | |
60 | 49 59 | r19.29a | |
61 | 17 60 | impbida | |