Metamath Proof Explorer


Theorem fge0iccico

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccico.f φF:X0+∞
fge0iccico.re φ¬+∞ranF
Assertion fge0iccico φF:X0+∞

Proof

Step Hyp Ref Expression
1 fge0iccico.f φF:X0+∞
2 fge0iccico.re φ¬+∞ranF
3 1 ffnd φFFnX
4 0xr 0*
5 4 a1i φxX0*
6 pnfxr +∞*
7 6 a1i φxX+∞*
8 iccssxr 0+∞*
9 1 ffvelcdmda φxXFx0+∞
10 8 9 sselid φxXFx*
11 iccgelb 0*+∞*Fx0+∞0Fx
12 5 7 9 11 syl3anc φxX0Fx
13 10 adantr φxX¬Fx<+∞Fx*
14 simpr φxX¬Fx<+∞¬Fx<+∞
15 6 a1i φxX¬Fx<+∞+∞*
16 15 13 xrlenltd φxX¬Fx<+∞+∞Fx¬Fx<+∞
17 14 16 mpbird φxX¬Fx<+∞+∞Fx
18 13 17 xrgepnfd φxX¬Fx<+∞Fx=+∞
19 18 eqcomd φxX¬Fx<+∞+∞=Fx
20 1 ffund φFunF
21 20 adantr φxXFunF
22 simpr φxXxX
23 fdm F:X0+∞domF=X
24 23 eqcomd F:X0+∞X=domF
25 1 24 syl φX=domF
26 25 adantr φxXX=domF
27 22 26 eleqtrd φxXxdomF
28 fvelrn FunFxdomFFxranF
29 21 27 28 syl2anc φxXFxranF
30 29 adantr φxX¬Fx<+∞FxranF
31 19 30 eqeltrd φxX¬Fx<+∞+∞ranF
32 2 ad2antrr φxX¬Fx<+∞¬+∞ranF
33 31 32 condan φxXFx<+∞
34 5 7 10 12 33 elicod φxXFx0+∞
35 34 ralrimiva φxXFx0+∞
36 3 35 jca φFFnXxXFx0+∞
37 ffnfv F:X0+∞FFnXxXFx0+∞
38 36 37 sylibr φF:X0+∞