| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin1a2lem.b |
|
| 2 |
|
fin1a2lem.aa |
|
| 3 |
2
|
fin1a2lem2 |
|
| 4 |
1
|
fin1a2lem4 |
|
| 5 |
|
f1f |
|
| 6 |
|
frn |
|
| 7 |
|
omsson |
|
| 8 |
6 7
|
sstrdi |
|
| 9 |
4 5 8
|
mp2b |
|
| 10 |
|
f1ores |
|
| 11 |
3 9 10
|
mp2an |
|
| 12 |
9
|
sseli |
|
| 13 |
2
|
fin1a2lem1 |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
15
|
rexbiia |
|
| 17 |
4 5 6
|
mp2b |
|
| 18 |
17
|
sseli |
|
| 19 |
|
peano2 |
|
| 20 |
18 19
|
syl |
|
| 21 |
1
|
fin1a2lem5 |
|
| 22 |
21
|
biimpd |
|
| 23 |
18 22
|
mpcom |
|
| 24 |
20 23
|
jca |
|
| 25 |
|
eleq1 |
|
| 26 |
|
eleq1 |
|
| 27 |
26
|
notbid |
|
| 28 |
25 27
|
anbi12d |
|
| 29 |
24 28
|
syl5ibcom |
|
| 30 |
29
|
rexlimiv |
|
| 31 |
|
peano1 |
|
| 32 |
1
|
fin1a2lem3 |
|
| 33 |
31 32
|
ax-mp |
|
| 34 |
|
2on |
|
| 35 |
|
om0 |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
33 36
|
eqtri |
|
| 38 |
|
f1fun |
|
| 39 |
4 38
|
ax-mp |
|
| 40 |
|
f1dm |
|
| 41 |
4 40
|
ax-mp |
|
| 42 |
31 41
|
eleqtrri |
|
| 43 |
|
fvelrn |
|
| 44 |
39 42 43
|
mp2an |
|
| 45 |
37 44
|
eqeltrri |
|
| 46 |
|
eleq1 |
|
| 47 |
45 46
|
mpbiri |
|
| 48 |
47
|
necon3bi |
|
| 49 |
|
nnsuc |
|
| 50 |
48 49
|
sylan2 |
|
| 51 |
|
eleq1 |
|
| 52 |
|
eleq1 |
|
| 53 |
52
|
notbid |
|
| 54 |
51 53
|
anbi12d |
|
| 55 |
54
|
anbi1d |
|
| 56 |
|
simplr |
|
| 57 |
21
|
adantl |
|
| 58 |
56 57
|
mpbird |
|
| 59 |
55 58
|
biimtrdi |
|
| 60 |
59
|
com12 |
|
| 61 |
60
|
impr |
|
| 62 |
|
simprr |
|
| 63 |
62
|
eqcomd |
|
| 64 |
50 61 63
|
reximssdv |
|
| 65 |
30 64
|
impbii |
|
| 66 |
16 65
|
bitri |
|
| 67 |
|
f1fn |
|
| 68 |
3 67
|
ax-mp |
|
| 69 |
|
fvelimab |
|
| 70 |
68 9 69
|
mp2an |
|
| 71 |
|
eldif |
|
| 72 |
66 70 71
|
3bitr4i |
|
| 73 |
72
|
eqriv |
|
| 74 |
|
f1oeq3 |
|
| 75 |
73 74
|
ax-mp |
|
| 76 |
11 75
|
mpbi |
|