Metamath Proof Explorer


Theorem fin23lem27

Description: The mapping constructed in fin23lem22 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypothesis fin23lem22.b C = i ω ι j S | j S i
Assertion fin23lem27 S ω ¬ S Fin C Isom E , E ω S

Proof

Step Hyp Ref Expression
1 fin23lem22.b C = i ω ι j S | j S i
2 ordom Ord ω
3 ordwe Ord ω E We ω
4 weso E We ω E Or ω
5 2 3 4 mp2b E Or ω
6 5 a1i S ω ¬ S Fin E Or ω
7 sopo E Or ω E Po ω
8 5 7 ax-mp E Po ω
9 poss S ω E Po ω E Po S
10 8 9 mpi S ω E Po S
11 10 adantr S ω ¬ S Fin E Po S
12 1 fin23lem22 S ω ¬ S Fin C : ω 1-1 onto S
13 f1ofo C : ω 1-1 onto S C : ω onto S
14 12 13 syl S ω ¬ S Fin C : ω onto S
15 nnsdomel a ω b ω a b a b
16 15 adantl S ω ¬ S Fin a ω b ω a b a b
17 16 biimpd S ω ¬ S Fin a ω b ω a b a b
18 fin23lem23 S ω ¬ S Fin a ω ∃! j S j S a
19 18 adantrr S ω ¬ S Fin a ω b ω ∃! j S j S a
20 ineq1 j = i j S = i S
21 20 breq1d j = i j S a i S a
22 21 cbvreuvw ∃! j S j S a ∃! i S i S a
23 19 22 sylib S ω ¬ S Fin a ω b ω ∃! i S i S a
24 nfv i ι j S | j S a S a
25 21 cbvriotavw ι j S | j S a = ι i S | i S a
26 ineq1 i = ι j S | j S a i S = ι j S | j S a S
27 26 breq1d i = ι j S | j S a i S a ι j S | j S a S a
28 24 25 27 riotaprop ∃! i S i S a ι j S | j S a S ι j S | j S a S a
29 23 28 syl S ω ¬ S Fin a ω b ω ι j S | j S a S ι j S | j S a S a
30 29 simprd S ω ¬ S Fin a ω b ω ι j S | j S a S a
31 30 adantrr S ω ¬ S Fin a ω b ω a b ι j S | j S a S a
32 simprr S ω ¬ S Fin a ω b ω a b a b
33 fin23lem23 S ω ¬ S Fin b ω ∃! j S j S b
34 33 adantrl S ω ¬ S Fin a ω b ω ∃! j S j S b
35 20 breq1d j = i j S b i S b
36 35 cbvreuvw ∃! j S j S b ∃! i S i S b
37 34 36 sylib S ω ¬ S Fin a ω b ω ∃! i S i S b
38 nfv i ι j S | j S b S b
39 35 cbvriotavw ι j S | j S b = ι i S | i S b
40 ineq1 i = ι j S | j S b i S = ι j S | j S b S
41 40 breq1d i = ι j S | j S b i S b ι j S | j S b S b
42 38 39 41 riotaprop ∃! i S i S b ι j S | j S b S ι j S | j S b S b
43 37 42 syl S ω ¬ S Fin a ω b ω ι j S | j S b S ι j S | j S b S b
44 43 simprd S ω ¬ S Fin a ω b ω ι j S | j S b S b
45 44 ensymd S ω ¬ S Fin a ω b ω b ι j S | j S b S
46 45 adantrr S ω ¬ S Fin a ω b ω a b b ι j S | j S b S
47 sdomentr a b b ι j S | j S b S a ι j S | j S b S
48 32 46 47 syl2anc S ω ¬ S Fin a ω b ω a b a ι j S | j S b S
49 ensdomtr ι j S | j S a S a a ι j S | j S b S ι j S | j S a S ι j S | j S b S
50 31 48 49 syl2anc S ω ¬ S Fin a ω b ω a b ι j S | j S a S ι j S | j S b S
51 50 expr S ω ¬ S Fin a ω b ω a b ι j S | j S a S ι j S | j S b S
52 simpll S ω ¬ S Fin a ω b ω S ω
53 omsson ω On
54 52 53 sstrdi S ω ¬ S Fin a ω b ω S On
55 29 simpld S ω ¬ S Fin a ω b ω ι j S | j S a S
56 54 55 sseldd S ω ¬ S Fin a ω b ω ι j S | j S a On
57 43 simpld S ω ¬ S Fin a ω b ω ι j S | j S b S
58 54 57 sseldd S ω ¬ S Fin a ω b ω ι j S | j S b On
59 onsdominel ι j S | j S a On ι j S | j S b On ι j S | j S a S ι j S | j S b S ι j S | j S a ι j S | j S b
60 59 3expia ι j S | j S a On ι j S | j S b On ι j S | j S a S ι j S | j S b S ι j S | j S a ι j S | j S b
61 56 58 60 syl2anc S ω ¬ S Fin a ω b ω ι j S | j S a S ι j S | j S b S ι j S | j S a ι j S | j S b
62 17 51 61 3syld S ω ¬ S Fin a ω b ω a b ι j S | j S a ι j S | j S b
63 breq2 i = a j S i j S a
64 63 riotabidv i = a ι j S | j S i = ι j S | j S a
65 simprl S ω ¬ S Fin a ω b ω a ω
66 1 64 65 55 fvmptd3 S ω ¬ S Fin a ω b ω C a = ι j S | j S a
67 breq2 i = b j S i j S b
68 67 riotabidv i = b ι j S | j S i = ι j S | j S b
69 simprr S ω ¬ S Fin a ω b ω b ω
70 1 68 69 57 fvmptd3 S ω ¬ S Fin a ω b ω C b = ι j S | j S b
71 66 70 eleq12d S ω ¬ S Fin a ω b ω C a C b ι j S | j S a ι j S | j S b
72 62 71 sylibrd S ω ¬ S Fin a ω b ω a b C a C b
73 epel a E b a b
74 fvex C b V
75 74 epeli C a E C b C a C b
76 72 73 75 3imtr4g S ω ¬ S Fin a ω b ω a E b C a E C b
77 76 ralrimivva S ω ¬ S Fin a ω b ω a E b C a E C b
78 soisoi E Or ω E Po S C : ω onto S a ω b ω a E b C a E C b C Isom E , E ω S
79 6 11 14 77 78 syl22anc S ω ¬ S Fin C Isom E , E ω S