Metamath Proof Explorer


Theorem fin23lem27

Description: The mapping constructed in fin23lem22 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypothesis fin23lem22.b C=iωιjS|jSi
Assertion fin23lem27 Sω¬SFinCIsomE,EωS

Proof

Step Hyp Ref Expression
1 fin23lem22.b C=iωιjS|jSi
2 ordom Ordω
3 ordwe OrdωEWeω
4 weso EWeωEOrω
5 2 3 4 mp2b EOrω
6 5 a1i Sω¬SFinEOrω
7 sopo EOrωEPoω
8 5 7 ax-mp EPoω
9 poss SωEPoωEPoS
10 8 9 mpi SωEPoS
11 10 adantr Sω¬SFinEPoS
12 1 fin23lem22 Sω¬SFinC:ω1-1 ontoS
13 f1ofo C:ω1-1 ontoSC:ωontoS
14 12 13 syl Sω¬SFinC:ωontoS
15 nnsdomel aωbωabab
16 15 adantl Sω¬SFinaωbωabab
17 16 biimpd Sω¬SFinaωbωabab
18 fin23lem23 Sω¬SFinaω∃!jSjSa
19 18 adantrr Sω¬SFinaωbω∃!jSjSa
20 ineq1 j=ijS=iS
21 20 breq1d j=ijSaiSa
22 21 cbvreuvw ∃!jSjSa∃!iSiSa
23 19 22 sylib Sω¬SFinaωbω∃!iSiSa
24 nfv iιjS|jSaSa
25 21 cbvriotavw ιjS|jSa=ιiS|iSa
26 ineq1 i=ιjS|jSaiS=ιjS|jSaS
27 26 breq1d i=ιjS|jSaiSaιjS|jSaSa
28 24 25 27 riotaprop ∃!iSiSaιjS|jSaSιjS|jSaSa
29 23 28 syl Sω¬SFinaωbωιjS|jSaSιjS|jSaSa
30 29 simprd Sω¬SFinaωbωιjS|jSaSa
31 30 adantrr Sω¬SFinaωbωabιjS|jSaSa
32 simprr Sω¬SFinaωbωabab
33 fin23lem23 Sω¬SFinbω∃!jSjSb
34 33 adantrl Sω¬SFinaωbω∃!jSjSb
35 20 breq1d j=ijSbiSb
36 35 cbvreuvw ∃!jSjSb∃!iSiSb
37 34 36 sylib Sω¬SFinaωbω∃!iSiSb
38 nfv iιjS|jSbSb
39 35 cbvriotavw ιjS|jSb=ιiS|iSb
40 ineq1 i=ιjS|jSbiS=ιjS|jSbS
41 40 breq1d i=ιjS|jSbiSbιjS|jSbSb
42 38 39 41 riotaprop ∃!iSiSbιjS|jSbSιjS|jSbSb
43 37 42 syl Sω¬SFinaωbωιjS|jSbSιjS|jSbSb
44 43 simprd Sω¬SFinaωbωιjS|jSbSb
45 44 ensymd Sω¬SFinaωbωbιjS|jSbS
46 45 adantrr Sω¬SFinaωbωabbιjS|jSbS
47 sdomentr abbιjS|jSbSaιjS|jSbS
48 32 46 47 syl2anc Sω¬SFinaωbωabaιjS|jSbS
49 ensdomtr ιjS|jSaSaaιjS|jSbSιjS|jSaSιjS|jSbS
50 31 48 49 syl2anc Sω¬SFinaωbωabιjS|jSaSιjS|jSbS
51 50 expr Sω¬SFinaωbωabιjS|jSaSιjS|jSbS
52 simpll Sω¬SFinaωbωSω
53 omsson ωOn
54 52 53 sstrdi Sω¬SFinaωbωSOn
55 29 simpld Sω¬SFinaωbωιjS|jSaS
56 54 55 sseldd Sω¬SFinaωbωιjS|jSaOn
57 43 simpld Sω¬SFinaωbωιjS|jSbS
58 54 57 sseldd Sω¬SFinaωbωιjS|jSbOn
59 onsdominel ιjS|jSaOnιjS|jSbOnιjS|jSaSιjS|jSbSιjS|jSaιjS|jSb
60 59 3expia ιjS|jSaOnιjS|jSbOnιjS|jSaSιjS|jSbSιjS|jSaιjS|jSb
61 56 58 60 syl2anc Sω¬SFinaωbωιjS|jSaSιjS|jSbSιjS|jSaιjS|jSb
62 17 51 61 3syld Sω¬SFinaωbωabιjS|jSaιjS|jSb
63 breq2 i=ajSijSa
64 63 riotabidv i=aιjS|jSi=ιjS|jSa
65 simprl Sω¬SFinaωbωaω
66 1 64 65 55 fvmptd3 Sω¬SFinaωbωCa=ιjS|jSa
67 breq2 i=bjSijSb
68 67 riotabidv i=bιjS|jSi=ιjS|jSb
69 simprr Sω¬SFinaωbωbω
70 1 68 69 57 fvmptd3 Sω¬SFinaωbωCb=ιjS|jSb
71 66 70 eleq12d Sω¬SFinaωbωCaCbιjS|jSaιjS|jSb
72 62 71 sylibrd Sω¬SFinaωbωabCaCb
73 epel aEbab
74 fvex CbV
75 74 epeli CaECbCaCb
76 72 73 75 3imtr4g Sω¬SFinaωbωaEbCaECb
77 76 ralrimivva Sω¬SFinaωbωaEbCaECb
78 soisoi EOrωEPoSC:ωontoSaωbωaEbCaECbCIsomE,EωS
79 6 11 14 77 78 syl22anc Sω¬SFinCIsomE,EωS