| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem22.b |
|
| 2 |
|
ordom |
|
| 3 |
|
ordwe |
|
| 4 |
|
weso |
|
| 5 |
2 3 4
|
mp2b |
|
| 6 |
5
|
a1i |
|
| 7 |
|
sopo |
|
| 8 |
5 7
|
ax-mp |
|
| 9 |
|
poss |
|
| 10 |
8 9
|
mpi |
|
| 11 |
10
|
adantr |
|
| 12 |
1
|
fin23lem22 |
|
| 13 |
|
f1ofo |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
nnsdomel |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
biimpd |
|
| 18 |
|
fin23lem23 |
|
| 19 |
18
|
adantrr |
|
| 20 |
|
ineq1 |
|
| 21 |
20
|
breq1d |
|
| 22 |
21
|
cbvreuvw |
|
| 23 |
19 22
|
sylib |
|
| 24 |
|
nfv |
|
| 25 |
21
|
cbvriotavw |
|
| 26 |
|
ineq1 |
|
| 27 |
26
|
breq1d |
|
| 28 |
24 25 27
|
riotaprop |
|
| 29 |
23 28
|
syl |
|
| 30 |
29
|
simprd |
|
| 31 |
30
|
adantrr |
|
| 32 |
|
simprr |
|
| 33 |
|
fin23lem23 |
|
| 34 |
33
|
adantrl |
|
| 35 |
20
|
breq1d |
|
| 36 |
35
|
cbvreuvw |
|
| 37 |
34 36
|
sylib |
|
| 38 |
|
nfv |
|
| 39 |
35
|
cbvriotavw |
|
| 40 |
|
ineq1 |
|
| 41 |
40
|
breq1d |
|
| 42 |
38 39 41
|
riotaprop |
|
| 43 |
37 42
|
syl |
|
| 44 |
43
|
simprd |
|
| 45 |
44
|
ensymd |
|
| 46 |
45
|
adantrr |
|
| 47 |
|
sdomentr |
|
| 48 |
32 46 47
|
syl2anc |
|
| 49 |
|
ensdomtr |
|
| 50 |
31 48 49
|
syl2anc |
|
| 51 |
50
|
expr |
|
| 52 |
|
simpll |
|
| 53 |
|
omsson |
|
| 54 |
52 53
|
sstrdi |
|
| 55 |
29
|
simpld |
|
| 56 |
54 55
|
sseldd |
|
| 57 |
43
|
simpld |
|
| 58 |
54 57
|
sseldd |
|
| 59 |
|
onsdominel |
|
| 60 |
59
|
3expia |
|
| 61 |
56 58 60
|
syl2anc |
|
| 62 |
17 51 61
|
3syld |
|
| 63 |
|
breq2 |
|
| 64 |
63
|
riotabidv |
|
| 65 |
|
simprl |
|
| 66 |
1 64 65 55
|
fvmptd3 |
|
| 67 |
|
breq2 |
|
| 68 |
67
|
riotabidv |
|
| 69 |
|
simprr |
|
| 70 |
1 68 69 57
|
fvmptd3 |
|
| 71 |
66 70
|
eleq12d |
|
| 72 |
62 71
|
sylibrd |
|
| 73 |
|
epel |
|
| 74 |
|
fvex |
|
| 75 |
74
|
epeli |
|
| 76 |
72 73 75
|
3imtr4g |
|
| 77 |
76
|
ralrimivva |
|
| 78 |
|
soisoi |
|
| 79 |
6 11 14 77 78
|
syl22anc |
|