Metamath Proof Explorer


Theorem fin23lem28

Description: Lemma for fin23 . The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.b P=vω|ranUtv
fin23lem.c Q=wωιxP|xPw
fin23lem.d R=wωιxωP|xωPw
fin23lem.e Z=ifPFintRzPtzranUQ
Assertion fin23lem28 t:ω1-1VZ:ω1-1V

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 fin23lem.b P=vω|ranUtv
4 fin23lem.c Q=wωιxP|xPw
5 fin23lem.d R=wωιxωP|xωPw
6 fin23lem.e Z=ifPFintRzPtzranUQ
7 eqif Z=ifPFintRzPtzranUQPFinZ=tR¬PFinZ=zPtzranUQ
8 6 7 mpbi PFinZ=tR¬PFinZ=zPtzranUQ
9 difss ωPω
10 ominf ¬ωFin
11 3 ssrab3 Pω
12 undif PωPωP=ω
13 11 12 mpbi PωP=ω
14 unfi PFinωPFinPωPFin
15 13 14 eqeltrrid PFinωPFinωFin
16 15 ex PFinωPFinωFin
17 10 16 mtoi PFin¬ωPFin
18 5 fin23lem22 ωPω¬ωPFinR:ω1-1 ontoωP
19 9 17 18 sylancr PFinR:ω1-1 ontoωP
20 19 adantl t:ω1-1VPFinR:ω1-1 ontoωP
21 f1of1 R:ω1-1 ontoωPR:ω1-1ωP
22 f1ss R:ω1-1ωPωPωR:ω1-1ω
23 9 22 mpan2 R:ω1-1ωPR:ω1-1ω
24 20 21 23 3syl t:ω1-1VPFinR:ω1-1ω
25 f1co t:ω1-1VR:ω1-1ωtR:ω1-1V
26 24 25 syldan t:ω1-1VPFintR:ω1-1V
27 f1eq1 Z=tRZ:ω1-1VtR:ω1-1V
28 26 27 syl5ibrcom t:ω1-1VPFinZ=tRZ:ω1-1V
29 28 impr t:ω1-1VPFinZ=tRZ:ω1-1V
30 fvex tzV
31 30 difexi tzranUV
32 31 rgenw zPtzranUV
33 eqid zPtzranU=zPtzranU
34 33 fmpt zPtzranUVzPtzranU:PV
35 32 34 mpbi zPtzranU:PV
36 35 a1i t:ω1-1VzPtzranU:PV
37 fveq2 z=atz=ta
38 37 difeq1d z=atzranU=taranU
39 fvex taV
40 39 difexi taranUV
41 38 33 40 fvmpt aPzPtzranUa=taranU
42 41 ad2antrl t:ω1-1VaPbPzPtzranUa=taranU
43 fveq2 z=btz=tb
44 43 difeq1d z=btzranU=tbranU
45 fvex tbV
46 45 difexi tbranUV
47 44 33 46 fvmpt bPzPtzranUb=tbranU
48 47 ad2antll t:ω1-1VaPbPzPtzranUb=tbranU
49 42 48 eqeq12d t:ω1-1VaPbPzPtzranUa=zPtzranUbtaranU=tbranU
50 uneq2 taranU=tbranUranUtaranU=ranUtbranU
51 fveq2 v=atv=ta
52 51 sseq2d v=aranUtvranUta
53 52 3 elrab2 aPaωranUta
54 53 simprbi aPranUta
55 54 ad2antrl t:ω1-1VaPbPranUta
56 undif ranUtaranUtaranU=ta
57 55 56 sylib t:ω1-1VaPbPranUtaranU=ta
58 fveq2 v=btv=tb
59 58 sseq2d v=branUtvranUtb
60 59 3 elrab2 bPbωranUtb
61 60 simprbi bPranUtb
62 61 ad2antll t:ω1-1VaPbPranUtb
63 undif ranUtbranUtbranU=tb
64 62 63 sylib t:ω1-1VaPbPranUtbranU=tb
65 57 64 eqeq12d t:ω1-1VaPbPranUtaranU=ranUtbranUta=tb
66 50 65 imbitrid t:ω1-1VaPbPtaranU=tbranUta=tb
67 11 sseli aPaω
68 11 sseli bPbω
69 67 68 anim12i aPbPaωbω
70 f1fveq t:ω1-1Vaωbωta=tba=b
71 69 70 sylan2 t:ω1-1VaPbPta=tba=b
72 66 71 sylibd t:ω1-1VaPbPtaranU=tbranUa=b
73 49 72 sylbid t:ω1-1VaPbPzPtzranUa=zPtzranUba=b
74 73 ralrimivva t:ω1-1VaPbPzPtzranUa=zPtzranUba=b
75 dff13 zPtzranU:P1-1VzPtzranU:PVaPbPzPtzranUa=zPtzranUba=b
76 36 74 75 sylanbrc t:ω1-1VzPtzranU:P1-1V
77 4 fin23lem22 Pω¬PFinQ:ω1-1 ontoP
78 f1of1 Q:ω1-1 ontoPQ:ω1-1P
79 77 78 syl Pω¬PFinQ:ω1-1P
80 11 79 mpan ¬PFinQ:ω1-1P
81 f1co zPtzranU:P1-1VQ:ω1-1PzPtzranUQ:ω1-1V
82 76 80 81 syl2an t:ω1-1V¬PFinzPtzranUQ:ω1-1V
83 f1eq1 Z=zPtzranUQZ:ω1-1VzPtzranUQ:ω1-1V
84 82 83 syl5ibrcom t:ω1-1V¬PFinZ=zPtzranUQZ:ω1-1V
85 84 impr t:ω1-1V¬PFinZ=zPtzranUQZ:ω1-1V
86 29 85 jaodan t:ω1-1VPFinZ=tR¬PFinZ=zPtzranUQZ:ω1-1V
87 8 86 mpan2 t:ω1-1VZ:ω1-1V