| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem.a |
|
| 2 |
|
fin23lem17.f |
|
| 3 |
|
fin23lem.b |
|
| 4 |
|
fin23lem.c |
|
| 5 |
|
fin23lem.d |
|
| 6 |
|
fin23lem.e |
|
| 7 |
1 2 3 4 5 6
|
fin23lem28 |
|
| 8 |
7
|
ad2antrl |
|
| 9 |
|
simprl |
|
| 10 |
|
simpl |
|
| 11 |
|
simprr |
|
| 12 |
1 2 3 4 5 6
|
fin23lem31 |
|
| 13 |
9 10 11 12
|
syl3anc |
|
| 14 |
|
f1fn |
|
| 15 |
|
dffn3 |
|
| 16 |
14 15
|
sylib |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
|
sspwuni |
|
| 19 |
18
|
biimpri |
|
| 20 |
19
|
ad2antll |
|
| 21 |
17 20
|
fssd |
|
| 22 |
|
pwexg |
|
| 23 |
22
|
adantr |
|
| 24 |
|
vex |
|
| 25 |
|
f1f |
|
| 26 |
|
dmfex |
|
| 27 |
24 25 26
|
sylancr |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
23 28
|
elmapd |
|
| 30 |
21 29
|
mpbird |
|
| 31 |
|
f1f |
|
| 32 |
8 31
|
syl |
|
| 33 |
32 28
|
fexd |
|
| 34 |
|
eqid |
|
| 35 |
34
|
fvmpt2 |
|
| 36 |
30 33 35
|
syl2anc |
|
| 37 |
|
f1eq1 |
|
| 38 |
|
rneq |
|
| 39 |
38
|
unieqd |
|
| 40 |
39
|
psseq1d |
|
| 41 |
37 40
|
anbi12d |
|
| 42 |
36 41
|
syl |
|
| 43 |
8 13 42
|
mpbir2and |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
alrimiv |
|
| 46 |
|
ovex |
|
| 47 |
46
|
mptex |
|
| 48 |
|
nfmpt1 |
|
| 49 |
48
|
nfeq2 |
|
| 50 |
|
fveq1 |
|
| 51 |
|
f1eq1 |
|
| 52 |
50 51
|
syl |
|
| 53 |
50
|
rneqd |
|
| 54 |
53
|
unieqd |
|
| 55 |
54
|
psseq1d |
|
| 56 |
52 55
|
anbi12d |
|
| 57 |
56
|
imbi2d |
|
| 58 |
49 57
|
albid |
|
| 59 |
47 58
|
spcev |
|
| 60 |
45 59
|
syl |
|
| 61 |
|
f1eq1 |
|
| 62 |
|
rneq |
|
| 63 |
62
|
unieqd |
|
| 64 |
63
|
sseq1d |
|
| 65 |
61 64
|
anbi12d |
|
| 66 |
|
fveq2 |
|
| 67 |
|
f1eq1 |
|
| 68 |
66 67
|
syl |
|
| 69 |
66
|
rneqd |
|
| 70 |
69
|
unieqd |
|
| 71 |
70 63
|
psseq12d |
|
| 72 |
68 71
|
anbi12d |
|
| 73 |
65 72
|
imbi12d |
|
| 74 |
73
|
cbvalvw |
|
| 75 |
74
|
exbii |
|
| 76 |
60 75
|
sylibr |
|