Metamath Proof Explorer


Theorem fin23lem32

Description: Lemma for fin23 . Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.b P=vω|ranUtv
fin23lem.c Q=wωιxP|xPw
fin23lem.d R=wωιxωP|xωPw
fin23lem.e Z=ifPFintRzPtzranUQ
Assertion fin23lem32 GFfbb:ω1-1VranbGfb:ω1-1Vranfbranb

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 fin23lem.b P=vω|ranUtv
4 fin23lem.c Q=wωιxP|xPw
5 fin23lem.d R=wωιxωP|xωPw
6 fin23lem.e Z=ifPFintRzPtzranUQ
7 1 2 3 4 5 6 fin23lem28 t:ω1-1VZ:ω1-1V
8 7 ad2antrl GFt:ω1-1VrantGZ:ω1-1V
9 simprl GFt:ω1-1VrantGt:ω1-1V
10 simpl GFt:ω1-1VrantGGF
11 simprr GFt:ω1-1VrantGrantG
12 1 2 3 4 5 6 fin23lem31 t:ω1-1VGFrantGranZrant
13 9 10 11 12 syl3anc GFt:ω1-1VrantGranZrant
14 f1fn t:ω1-1VtFnω
15 dffn3 tFnωt:ωrant
16 14 15 sylib t:ω1-1Vt:ωrant
17 16 ad2antrl GFt:ω1-1VrantGt:ωrant
18 sspwuni rant𝒫GrantG
19 18 biimpri rantGrant𝒫G
20 19 ad2antll GFt:ω1-1VrantGrant𝒫G
21 17 20 fssd GFt:ω1-1VrantGt:ω𝒫G
22 pwexg GF𝒫GV
23 22 adantr GFt:ω1-1VrantG𝒫GV
24 vex tV
25 f1f t:ω1-1Vt:ωV
26 dmfex tVt:ωVωV
27 24 25 26 sylancr t:ω1-1VωV
28 27 ad2antrl GFt:ω1-1VrantGωV
29 23 28 elmapd GFt:ω1-1VrantGt𝒫Gωt:ω𝒫G
30 21 29 mpbird GFt:ω1-1VrantGt𝒫Gω
31 f1f Z:ω1-1VZ:ωV
32 8 31 syl GFt:ω1-1VrantGZ:ωV
33 32 28 fexd GFt:ω1-1VrantGZV
34 eqid t𝒫GωZ=t𝒫GωZ
35 34 fvmpt2 t𝒫GωZVt𝒫GωZt=Z
36 30 33 35 syl2anc GFt:ω1-1VrantGt𝒫GωZt=Z
37 f1eq1 t𝒫GωZt=Zt𝒫GωZt:ω1-1VZ:ω1-1V
38 rneq t𝒫GωZt=Zrant𝒫GωZt=ranZ
39 38 unieqd t𝒫GωZt=Zrant𝒫GωZt=ranZ
40 39 psseq1d t𝒫GωZt=Zrant𝒫GωZtrantranZrant
41 37 40 anbi12d t𝒫GωZt=Zt𝒫GωZt:ω1-1Vrant𝒫GωZtrantZ:ω1-1VranZrant
42 36 41 syl GFt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrantZ:ω1-1VranZrant
43 8 13 42 mpbir2and GFt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
44 43 ex GFt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
45 44 alrimiv GFtt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
46 ovex 𝒫GωV
47 46 mptex t𝒫GωZV
48 nfmpt1 _tt𝒫GωZ
49 48 nfeq2 tf=t𝒫GωZ
50 fveq1 f=t𝒫GωZft=t𝒫GωZt
51 f1eq1 ft=t𝒫GωZtft:ω1-1Vt𝒫GωZt:ω1-1V
52 50 51 syl f=t𝒫GωZft:ω1-1Vt𝒫GωZt:ω1-1V
53 50 rneqd f=t𝒫GωZranft=rant𝒫GωZt
54 53 unieqd f=t𝒫GωZranft=rant𝒫GωZt
55 54 psseq1d f=t𝒫GωZranftrantrant𝒫GωZtrant
56 52 55 anbi12d f=t𝒫GωZft:ω1-1Vranftrantt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
57 56 imbi2d f=t𝒫GωZt:ω1-1VrantGft:ω1-1Vranftrantt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
58 49 57 albid f=t𝒫GωZtt:ω1-1VrantGft:ω1-1Vranftranttt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrant
59 47 58 spcev tt:ω1-1VrantGt𝒫GωZt:ω1-1Vrant𝒫GωZtrantftt:ω1-1VrantGft:ω1-1Vranftrant
60 45 59 syl GFftt:ω1-1VrantGft:ω1-1Vranftrant
61 f1eq1 b=tb:ω1-1Vt:ω1-1V
62 rneq b=tranb=rant
63 62 unieqd b=tranb=rant
64 63 sseq1d b=tranbGrantG
65 61 64 anbi12d b=tb:ω1-1VranbGt:ω1-1VrantG
66 fveq2 b=tfb=ft
67 f1eq1 fb=ftfb:ω1-1Vft:ω1-1V
68 66 67 syl b=tfb:ω1-1Vft:ω1-1V
69 66 rneqd b=tranfb=ranft
70 69 unieqd b=tranfb=ranft
71 70 63 psseq12d b=tranfbranbranftrant
72 68 71 anbi12d b=tfb:ω1-1Vranfbranbft:ω1-1Vranftrant
73 65 72 imbi12d b=tb:ω1-1VranbGfb:ω1-1Vranfbranbt:ω1-1VrantGft:ω1-1Vranftrant
74 73 cbvalvw bb:ω1-1VranbGfb:ω1-1Vranfbranbtt:ω1-1VrantGft:ω1-1Vranftrant
75 74 exbii fbb:ω1-1VranbGfb:ω1-1Vranfbranbftt:ω1-1VrantGft:ω1-1Vranftrant
76 60 75 sylibr GFfbb:ω1-1VranbGfb:ω1-1Vranfbranb