Metamath Proof Explorer


Theorem fin23lem32

Description: Lemma for fin23 . Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.b P = v ω | ran U t v
fin23lem.c Q = w ω ι x P | x P w
fin23lem.d R = w ω ι x ω P | x ω P w
fin23lem.e Z = if P Fin t R z P t z ran U Q
Assertion fin23lem32 G F f b b : ω 1-1 V ran b G f b : ω 1-1 V ran f b ran b

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 fin23lem17.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
3 fin23lem.b P = v ω | ran U t v
4 fin23lem.c Q = w ω ι x P | x P w
5 fin23lem.d R = w ω ι x ω P | x ω P w
6 fin23lem.e Z = if P Fin t R z P t z ran U Q
7 1 2 3 4 5 6 fin23lem28 t : ω 1-1 V Z : ω 1-1 V
8 7 ad2antrl G F t : ω 1-1 V ran t G Z : ω 1-1 V
9 simprl G F t : ω 1-1 V ran t G t : ω 1-1 V
10 simpl G F t : ω 1-1 V ran t G G F
11 simprr G F t : ω 1-1 V ran t G ran t G
12 1 2 3 4 5 6 fin23lem31 t : ω 1-1 V G F ran t G ran Z ran t
13 9 10 11 12 syl3anc G F t : ω 1-1 V ran t G ran Z ran t
14 f1fn t : ω 1-1 V t Fn ω
15 dffn3 t Fn ω t : ω ran t
16 14 15 sylib t : ω 1-1 V t : ω ran t
17 16 ad2antrl G F t : ω 1-1 V ran t G t : ω ran t
18 sspwuni ran t 𝒫 G ran t G
19 18 biimpri ran t G ran t 𝒫 G
20 19 ad2antll G F t : ω 1-1 V ran t G ran t 𝒫 G
21 17 20 fssd G F t : ω 1-1 V ran t G t : ω 𝒫 G
22 pwexg G F 𝒫 G V
23 22 adantr G F t : ω 1-1 V ran t G 𝒫 G V
24 vex t V
25 f1f t : ω 1-1 V t : ω V
26 dmfex t V t : ω V ω V
27 24 25 26 sylancr t : ω 1-1 V ω V
28 27 ad2antrl G F t : ω 1-1 V ran t G ω V
29 23 28 elmapd G F t : ω 1-1 V ran t G t 𝒫 G ω t : ω 𝒫 G
30 21 29 mpbird G F t : ω 1-1 V ran t G t 𝒫 G ω
31 f1f Z : ω 1-1 V Z : ω V
32 8 31 syl G F t : ω 1-1 V ran t G Z : ω V
33 fex Z : ω V ω V Z V
34 32 28 33 syl2anc G F t : ω 1-1 V ran t G Z V
35 eqid t 𝒫 G ω Z = t 𝒫 G ω Z
36 35 fvmpt2 t 𝒫 G ω Z V t 𝒫 G ω Z t = Z
37 30 34 36 syl2anc G F t : ω 1-1 V ran t G t 𝒫 G ω Z t = Z
38 f1eq1 t 𝒫 G ω Z t = Z t 𝒫 G ω Z t : ω 1-1 V Z : ω 1-1 V
39 rneq t 𝒫 G ω Z t = Z ran t 𝒫 G ω Z t = ran Z
40 39 unieqd t 𝒫 G ω Z t = Z ran t 𝒫 G ω Z t = ran Z
41 40 psseq1d t 𝒫 G ω Z t = Z ran t 𝒫 G ω Z t ran t ran Z ran t
42 38 41 anbi12d t 𝒫 G ω Z t = Z t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t Z : ω 1-1 V ran Z ran t
43 37 42 syl G F t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t Z : ω 1-1 V ran Z ran t
44 8 13 43 mpbir2and G F t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
45 44 ex G F t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
46 45 alrimiv G F t t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
47 ovex 𝒫 G ω V
48 47 mptex t 𝒫 G ω Z V
49 nfmpt1 _ t t 𝒫 G ω Z
50 49 nfeq2 t f = t 𝒫 G ω Z
51 fveq1 f = t 𝒫 G ω Z f t = t 𝒫 G ω Z t
52 f1eq1 f t = t 𝒫 G ω Z t f t : ω 1-1 V t 𝒫 G ω Z t : ω 1-1 V
53 51 52 syl f = t 𝒫 G ω Z f t : ω 1-1 V t 𝒫 G ω Z t : ω 1-1 V
54 51 rneqd f = t 𝒫 G ω Z ran f t = ran t 𝒫 G ω Z t
55 54 unieqd f = t 𝒫 G ω Z ran f t = ran t 𝒫 G ω Z t
56 55 psseq1d f = t 𝒫 G ω Z ran f t ran t ran t 𝒫 G ω Z t ran t
57 53 56 anbi12d f = t 𝒫 G ω Z f t : ω 1-1 V ran f t ran t t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
58 57 imbi2d f = t 𝒫 G ω Z t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
59 50 58 albid f = t 𝒫 G ω Z t t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t t t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t
60 48 59 spcev t t : ω 1-1 V ran t G t 𝒫 G ω Z t : ω 1-1 V ran t 𝒫 G ω Z t ran t f t t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t
61 46 60 syl G F f t t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t
62 f1eq1 b = t b : ω 1-1 V t : ω 1-1 V
63 rneq b = t ran b = ran t
64 63 unieqd b = t ran b = ran t
65 64 sseq1d b = t ran b G ran t G
66 62 65 anbi12d b = t b : ω 1-1 V ran b G t : ω 1-1 V ran t G
67 fveq2 b = t f b = f t
68 f1eq1 f b = f t f b : ω 1-1 V f t : ω 1-1 V
69 67 68 syl b = t f b : ω 1-1 V f t : ω 1-1 V
70 67 rneqd b = t ran f b = ran f t
71 70 unieqd b = t ran f b = ran f t
72 71 64 psseq12d b = t ran f b ran b ran f t ran t
73 69 72 anbi12d b = t f b : ω 1-1 V ran f b ran b f t : ω 1-1 V ran f t ran t
74 66 73 imbi12d b = t b : ω 1-1 V ran b G f b : ω 1-1 V ran f b ran b t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t
75 74 cbvalvw b b : ω 1-1 V ran b G f b : ω 1-1 V ran f b ran b t t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t
76 75 exbii f b b : ω 1-1 V ran b G f b : ω 1-1 V ran f b ran b f t t : ω 1-1 V ran t G f t : ω 1-1 V ran f t ran t
77 61 76 sylibr G F f b b : ω 1-1 V ran b G f b : ω 1-1 V ran f b ran b