Metamath Proof Explorer


Theorem fincygsubgodd

Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgodd.1 B=BaseG
fincygsubgodd.2 ·˙=G
fincygsubgodd.3 D=BC
fincygsubgodd.4 F=nn·˙A
fincygsubgodd.5 H=nn·˙C·˙A
fincygsubgodd.6 φGGrp
fincygsubgodd.7 φAB
fincygsubgodd.8 φranF=B
fincygsubgodd.9 φCB
fincygsubgodd.10 φBFin
fincygsubgodd.11 φC
Assertion fincygsubgodd φranH=D

Proof

Step Hyp Ref Expression
1 fincygsubgodd.1 B=BaseG
2 fincygsubgodd.2 ·˙=G
3 fincygsubgodd.3 D=BC
4 fincygsubgodd.4 F=nn·˙A
5 fincygsubgodd.5 H=nn·˙C·˙A
6 fincygsubgodd.6 φGGrp
7 fincygsubgodd.7 φAB
8 fincygsubgodd.8 φranF=B
9 fincygsubgodd.9 φCB
10 fincygsubgodd.10 φBFin
11 fincygsubgodd.11 φC
12 eqid odG=odG
13 4 rneqi ranF=rannn·˙A
14 8 13 eqtr3di φB=rannn·˙A
15 1 2 12 6 7 14 cycsubggenodd φodGA=ifBFinB0
16 10 iftrued φifBFinB0=B
17 15 16 eqtrd φodGA=B
18 17 oveq1d φodGAC=BC
19 11 nnzd φC
20 1 12 2 odmulg GGrpABCodGA=CgcdodGAodGC·˙A
21 6 7 19 20 syl3anc φodGA=CgcdodGAodGC·˙A
22 1 12 odcl ABodGA0
23 nn0z odGA0odGA
24 7 22 23 3syl φodGA
25 9 17 breqtrrd φCodGA
26 11 24 25 dvdsgcdidd φCgcdodGA=C
27 26 oveq1d φCgcdodGAodGC·˙A=CodGC·˙A
28 21 27 eqtrd φodGA=CodGC·˙A
29 1 12 7 odcld φodGA0
30 29 nn0cnd φodGA
31 1 2 6 19 7 mulgcld φC·˙AB
32 1 12 31 odcld φodGC·˙A0
33 32 nn0cnd φodGC·˙A
34 19 zcnd φC
35 11 nnne0d φC0
36 30 33 34 35 divmul2d φodGAC=odGC·˙AodGA=CodGC·˙A
37 28 36 mpbird φodGAC=odGC·˙A
38 18 37 eqtr3d φBC=odGC·˙A
39 3 38 eqtrid φD=odGC·˙A
40 5 rneqi ranH=rannn·˙C·˙A
41 40 a1i φranH=rannn·˙C·˙A
42 1 2 12 6 31 41 cycsubggenodd φodGC·˙A=ifranHFinranH0
43 39 42 eqtrd φD=ifranHFinranH0
44 iffalse ¬ranHFinifranHFinranH0=0
45 43 44 sylan9eq φ¬ranHFinD=0
46 3 a1i φD=BC
47 hashcl BFinB0
48 nn0cn B0B
49 10 47 48 3syl φB
50 7 10 hashelne0d φ¬B=0
51 50 neqned φB0
52 49 34 51 35 divne0d φBC0
53 46 52 eqnetrd φD0
54 53 neneqd φ¬D=0
55 54 adantr φ¬ranHFin¬D=0
56 45 55 condan φranHFin
57 56 iftrued φifranHFinranH0=ranH
58 39 42 57 3eqtrrd φranH=D