Description: Calculate the order of a subgroup of a finite cyclic group. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fincygsubgodd.1 | |
|
fincygsubgodd.2 | |
||
fincygsubgodd.3 | |
||
fincygsubgodd.4 | |
||
fincygsubgodd.5 | |
||
fincygsubgodd.6 | |
||
fincygsubgodd.7 | |
||
fincygsubgodd.8 | |
||
fincygsubgodd.9 | |
||
fincygsubgodd.10 | |
||
fincygsubgodd.11 | |
||
Assertion | fincygsubgodd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fincygsubgodd.1 | |
|
2 | fincygsubgodd.2 | |
|
3 | fincygsubgodd.3 | |
|
4 | fincygsubgodd.4 | |
|
5 | fincygsubgodd.5 | |
|
6 | fincygsubgodd.6 | |
|
7 | fincygsubgodd.7 | |
|
8 | fincygsubgodd.8 | |
|
9 | fincygsubgodd.9 | |
|
10 | fincygsubgodd.10 | |
|
11 | fincygsubgodd.11 | |
|
12 | eqid | |
|
13 | 4 | rneqi | |
14 | 8 13 | eqtr3di | |
15 | 1 2 12 6 7 14 | cycsubggenodd | |
16 | 10 | iftrued | |
17 | 15 16 | eqtrd | |
18 | 17 | oveq1d | |
19 | 11 | nnzd | |
20 | 1 12 2 | odmulg | |
21 | 6 7 19 20 | syl3anc | |
22 | 1 12 | odcl | |
23 | nn0z | |
|
24 | 7 22 23 | 3syl | |
25 | 9 17 | breqtrrd | |
26 | 11 24 25 | dvdsgcdidd | |
27 | 26 | oveq1d | |
28 | 21 27 | eqtrd | |
29 | 1 12 7 | odcld | |
30 | 29 | nn0cnd | |
31 | 1 2 6 19 7 | mulgcld | |
32 | 1 12 31 | odcld | |
33 | 32 | nn0cnd | |
34 | 19 | zcnd | |
35 | 11 | nnne0d | |
36 | 30 33 34 35 | divmul2d | |
37 | 28 36 | mpbird | |
38 | 18 37 | eqtr3d | |
39 | 3 38 | eqtrid | |
40 | 5 | rneqi | |
41 | 40 | a1i | |
42 | 1 2 12 6 31 41 | cycsubggenodd | |
43 | 39 42 | eqtrd | |
44 | iffalse | |
|
45 | 43 44 | sylan9eq | |
46 | 3 | a1i | |
47 | hashcl | |
|
48 | nn0cn | |
|
49 | 10 47 48 | 3syl | |
50 | 7 10 | hashelne0d | |
51 | 50 | neqned | |
52 | 49 34 51 35 | divne0d | |
53 | 46 52 | eqnetrd | |
54 | 53 | neneqd | |
55 | 54 | adantr | |
56 | 45 55 | condan | |
57 | 56 | iftrued | |
58 | 39 42 57 | 3eqtrrd | |