Step |
Hyp |
Ref |
Expression |
1 |
|
flcidc.f |
|
2 |
|
flcidc.s |
|
3 |
|
flcidc.k |
|
4 |
|
flcidc.b |
|
5 |
1
|
fveq1d |
|
6 |
5
|
adantr |
|
7 |
3
|
snssd |
|
8 |
7
|
sselda |
|
9 |
|
eqeq1 |
|
10 |
9
|
ifbid |
|
11 |
|
eqid |
|
12 |
|
1ex |
|
13 |
|
c0ex |
|
14 |
12 13
|
ifex |
|
15 |
10 11 14
|
fvmpt |
|
16 |
8 15
|
syl |
|
17 |
6 16
|
eqtrd |
|
18 |
|
elsni |
|
19 |
18
|
iftrued |
|
20 |
19
|
adantl |
|
21 |
17 20
|
eqtrd |
|
22 |
21
|
oveq1d |
|
23 |
8 4
|
syldan |
|
24 |
23
|
mulid2d |
|
25 |
22 24
|
eqtrd |
|
26 |
25
|
sumeq2dv |
|
27 |
|
ax-1cn |
|
28 |
|
0cn |
|
29 |
27 28
|
ifcli |
|
30 |
17 29
|
eqeltrdi |
|
31 |
30 23
|
mulcld |
|
32 |
5
|
adantr |
|
33 |
|
eldifi |
|
34 |
33
|
adantl |
|
35 |
34 15
|
syl |
|
36 |
32 35
|
eqtrd |
|
37 |
|
eldifn |
|
38 |
|
velsn |
|
39 |
37 38
|
sylnib |
|
40 |
39
|
iffalsed |
|
41 |
40
|
adantl |
|
42 |
36 41
|
eqtrd |
|
43 |
42
|
oveq1d |
|
44 |
34 4
|
syldan |
|
45 |
44
|
mul02d |
|
46 |
43 45
|
eqtrd |
|
47 |
7 31 46 2
|
fsumss |
|
48 |
|
eleq1 |
|
49 |
48
|
anbi2d |
|
50 |
|
csbeq1 |
|
51 |
50
|
eleq1d |
|
52 |
49 51
|
imbi12d |
|
53 |
|
nfv |
|
54 |
|
nfcsb1v |
|
55 |
54
|
nfel1 |
|
56 |
53 55
|
nfim |
|
57 |
|
eleq1 |
|
58 |
57
|
anbi2d |
|
59 |
|
csbeq1a |
|
60 |
59
|
eleq1d |
|
61 |
58 60
|
imbi12d |
|
62 |
56 61 4
|
chvarfv |
|
63 |
52 62
|
vtoclg |
|
64 |
63
|
anabsi7 |
|
65 |
3 64
|
mpdan |
|
66 |
|
sumsns |
|
67 |
3 65 66
|
syl2anc |
|
68 |
26 47 67
|
3eqtr3d |
|