| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flcidc.f |  | 
						
							| 2 |  | flcidc.s |  | 
						
							| 3 |  | flcidc.k |  | 
						
							| 4 |  | flcidc.b |  | 
						
							| 5 | 1 | fveq1d |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 3 | snssd |  | 
						
							| 8 | 7 | sselda |  | 
						
							| 9 |  | eqeq1 |  | 
						
							| 10 | 9 | ifbid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | 1ex |  | 
						
							| 13 |  | c0ex |  | 
						
							| 14 | 12 13 | ifex |  | 
						
							| 15 | 10 11 14 | fvmpt |  | 
						
							| 16 | 8 15 | syl |  | 
						
							| 17 | 6 16 | eqtrd |  | 
						
							| 18 |  | elsni |  | 
						
							| 19 | 18 | iftrued |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 17 20 | eqtrd |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 | 8 4 | syldan |  | 
						
							| 24 | 23 | mullidd |  | 
						
							| 25 | 22 24 | eqtrd |  | 
						
							| 26 | 25 | sumeq2dv |  | 
						
							| 27 |  | ax-1cn |  | 
						
							| 28 |  | 0cn |  | 
						
							| 29 | 27 28 | ifcli |  | 
						
							| 30 | 17 29 | eqeltrdi |  | 
						
							| 31 | 30 23 | mulcld |  | 
						
							| 32 | 5 | adantr |  | 
						
							| 33 |  | eldifi |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 34 15 | syl |  | 
						
							| 36 | 32 35 | eqtrd |  | 
						
							| 37 |  | eldifn |  | 
						
							| 38 |  | velsn |  | 
						
							| 39 | 37 38 | sylnib |  | 
						
							| 40 | 39 | iffalsed |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 | 36 41 | eqtrd |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 34 4 | syldan |  | 
						
							| 45 | 44 | mul02d |  | 
						
							| 46 | 43 45 | eqtrd |  | 
						
							| 47 | 7 31 46 2 | fsumss |  | 
						
							| 48 |  | eleq1 |  | 
						
							| 49 | 48 | anbi2d |  | 
						
							| 50 |  | csbeq1 |  | 
						
							| 51 | 50 | eleq1d |  | 
						
							| 52 | 49 51 | imbi12d |  | 
						
							| 53 |  | nfv |  | 
						
							| 54 |  | nfcsb1v |  | 
						
							| 55 | 54 | nfel1 |  | 
						
							| 56 | 53 55 | nfim |  | 
						
							| 57 |  | eleq1 |  | 
						
							| 58 | 57 | anbi2d |  | 
						
							| 59 |  | csbeq1a |  | 
						
							| 60 | 59 | eleq1d |  | 
						
							| 61 | 58 60 | imbi12d |  | 
						
							| 62 | 56 61 4 | chvarfv |  | 
						
							| 63 | 52 62 | vtoclg |  | 
						
							| 64 | 63 | anabsi7 |  | 
						
							| 65 | 3 64 | mpdan |  | 
						
							| 66 |  | sumsns |  | 
						
							| 67 | 3 65 66 | syl2anc |  | 
						
							| 68 | 26 47 67 | 3eqtr3d |  |