Metamath Proof Explorer


Theorem flcidc

Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Hypotheses flcidc.f φF=jSifj=K10
flcidc.s φSFin
flcidc.k φKS
flcidc.b φiSB
Assertion flcidc φiSFiB=K/iB

Proof

Step Hyp Ref Expression
1 flcidc.f φF=jSifj=K10
2 flcidc.s φSFin
3 flcidc.k φKS
4 flcidc.b φiSB
5 1 fveq1d φFi=jSifj=K10i
6 5 adantr φiKFi=jSifj=K10i
7 3 snssd φKS
8 7 sselda φiKiS
9 eqeq1 j=ij=Ki=K
10 9 ifbid j=iifj=K10=ifi=K10
11 eqid jSifj=K10=jSifj=K10
12 1ex 1V
13 c0ex 0V
14 12 13 ifex ifi=K10V
15 10 11 14 fvmpt iSjSifj=K10i=ifi=K10
16 8 15 syl φiKjSifj=K10i=ifi=K10
17 6 16 eqtrd φiKFi=ifi=K10
18 elsni iKi=K
19 18 iftrued iKifi=K10=1
20 19 adantl φiKifi=K10=1
21 17 20 eqtrd φiKFi=1
22 21 oveq1d φiKFiB=1B
23 8 4 syldan φiKB
24 23 mullidd φiK1B=B
25 22 24 eqtrd φiKFiB=B
26 25 sumeq2dv φiKFiB=iKB
27 ax-1cn 1
28 0cn 0
29 27 28 ifcli ifi=K10
30 17 29 eqeltrdi φiKFi
31 30 23 mulcld φiKFiB
32 5 adantr φiSKFi=jSifj=K10i
33 eldifi iSKiS
34 33 adantl φiSKiS
35 34 15 syl φiSKjSifj=K10i=ifi=K10
36 32 35 eqtrd φiSKFi=ifi=K10
37 eldifn iSK¬iK
38 velsn iKi=K
39 37 38 sylnib iSK¬i=K
40 39 iffalsed iSKifi=K10=0
41 40 adantl φiSKifi=K10=0
42 36 41 eqtrd φiSKFi=0
43 42 oveq1d φiSKFiB=0B
44 34 4 syldan φiSKB
45 44 mul02d φiSK0B=0
46 43 45 eqtrd φiSKFiB=0
47 7 31 46 2 fsumss φiKFiB=iSFiB
48 eleq1 j=KjSKS
49 48 anbi2d j=KφjSφKS
50 csbeq1 j=Kj/iB=K/iB
51 50 eleq1d j=Kj/iBK/iB
52 49 51 imbi12d j=KφjSj/iBφKSK/iB
53 nfv iφjS
54 nfcsb1v _ij/iB
55 54 nfel1 ij/iB
56 53 55 nfim iφjSj/iB
57 eleq1 i=jiSjS
58 57 anbi2d i=jφiSφjS
59 csbeq1a i=jB=j/iB
60 59 eleq1d i=jBj/iB
61 58 60 imbi12d i=jφiSBφjSj/iB
62 56 61 4 chvarfv φjSj/iB
63 52 62 vtoclg KSφKSK/iB
64 63 anabsi7 φKSK/iB
65 3 64 mpdan φK/iB
66 sumsns KSK/iBiKB=K/iB
67 3 65 66 syl2anc φiKB=K/iB
68 26 47 67 3eqtr3d φiSFiB=K/iB