Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flcidc.f | |
|
flcidc.s | |
||
flcidc.k | |
||
flcidc.b | |
||
Assertion | flcidc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcidc.f | |
|
2 | flcidc.s | |
|
3 | flcidc.k | |
|
4 | flcidc.b | |
|
5 | 1 | fveq1d | |
6 | 5 | adantr | |
7 | 3 | snssd | |
8 | 7 | sselda | |
9 | eqeq1 | |
|
10 | 9 | ifbid | |
11 | eqid | |
|
12 | 1ex | |
|
13 | c0ex | |
|
14 | 12 13 | ifex | |
15 | 10 11 14 | fvmpt | |
16 | 8 15 | syl | |
17 | 6 16 | eqtrd | |
18 | elsni | |
|
19 | 18 | iftrued | |
20 | 19 | adantl | |
21 | 17 20 | eqtrd | |
22 | 21 | oveq1d | |
23 | 8 4 | syldan | |
24 | 23 | mullidd | |
25 | 22 24 | eqtrd | |
26 | 25 | sumeq2dv | |
27 | ax-1cn | |
|
28 | 0cn | |
|
29 | 27 28 | ifcli | |
30 | 17 29 | eqeltrdi | |
31 | 30 23 | mulcld | |
32 | 5 | adantr | |
33 | eldifi | |
|
34 | 33 | adantl | |
35 | 34 15 | syl | |
36 | 32 35 | eqtrd | |
37 | eldifn | |
|
38 | velsn | |
|
39 | 37 38 | sylnib | |
40 | 39 | iffalsed | |
41 | 40 | adantl | |
42 | 36 41 | eqtrd | |
43 | 42 | oveq1d | |
44 | 34 4 | syldan | |
45 | 44 | mul02d | |
46 | 43 45 | eqtrd | |
47 | 7 31 46 2 | fsumss | |
48 | eleq1 | |
|
49 | 48 | anbi2d | |
50 | csbeq1 | |
|
51 | 50 | eleq1d | |
52 | 49 51 | imbi12d | |
53 | nfv | |
|
54 | nfcsb1v | |
|
55 | 54 | nfel1 | |
56 | 53 55 | nfim | |
57 | eleq1 | |
|
58 | 57 | anbi2d | |
59 | csbeq1a | |
|
60 | 59 | eleq1d | |
61 | 58 60 | imbi12d | |
62 | 56 61 4 | chvarfv | |
63 | 52 62 | vtoclg | |
64 | 63 | anabsi7 | |
65 | 3 64 | mpdan | |
66 | sumsns | |
|
67 | 3 65 66 | syl2anc | |
68 | 26 47 67 | 3eqtr3d | |