Metamath Proof Explorer


Theorem flcidc

Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Hypotheses flcidc.f φ F = j S if j = K 1 0
flcidc.s φ S Fin
flcidc.k φ K S
flcidc.b φ i S B
Assertion flcidc φ i S F i B = K / i B

Proof

Step Hyp Ref Expression
1 flcidc.f φ F = j S if j = K 1 0
2 flcidc.s φ S Fin
3 flcidc.k φ K S
4 flcidc.b φ i S B
5 1 fveq1d φ F i = j S if j = K 1 0 i
6 5 adantr φ i K F i = j S if j = K 1 0 i
7 3 snssd φ K S
8 7 sselda φ i K i S
9 eqeq1 j = i j = K i = K
10 9 ifbid j = i if j = K 1 0 = if i = K 1 0
11 eqid j S if j = K 1 0 = j S if j = K 1 0
12 1ex 1 V
13 c0ex 0 V
14 12 13 ifex if i = K 1 0 V
15 10 11 14 fvmpt i S j S if j = K 1 0 i = if i = K 1 0
16 8 15 syl φ i K j S if j = K 1 0 i = if i = K 1 0
17 6 16 eqtrd φ i K F i = if i = K 1 0
18 elsni i K i = K
19 18 iftrued i K if i = K 1 0 = 1
20 19 adantl φ i K if i = K 1 0 = 1
21 17 20 eqtrd φ i K F i = 1
22 21 oveq1d φ i K F i B = 1 B
23 8 4 syldan φ i K B
24 23 mulid2d φ i K 1 B = B
25 22 24 eqtrd φ i K F i B = B
26 25 sumeq2dv φ i K F i B = i K B
27 ax-1cn 1
28 0cn 0
29 27 28 ifcli if i = K 1 0
30 17 29 eqeltrdi φ i K F i
31 30 23 mulcld φ i K F i B
32 5 adantr φ i S K F i = j S if j = K 1 0 i
33 eldifi i S K i S
34 33 adantl φ i S K i S
35 34 15 syl φ i S K j S if j = K 1 0 i = if i = K 1 0
36 32 35 eqtrd φ i S K F i = if i = K 1 0
37 eldifn i S K ¬ i K
38 velsn i K i = K
39 37 38 sylnib i S K ¬ i = K
40 39 iffalsed i S K if i = K 1 0 = 0
41 40 adantl φ i S K if i = K 1 0 = 0
42 36 41 eqtrd φ i S K F i = 0
43 42 oveq1d φ i S K F i B = 0 B
44 34 4 syldan φ i S K B
45 44 mul02d φ i S K 0 B = 0
46 43 45 eqtrd φ i S K F i B = 0
47 7 31 46 2 fsumss φ i K F i B = i S F i B
48 eleq1 j = K j S K S
49 48 anbi2d j = K φ j S φ K S
50 csbeq1 j = K j / i B = K / i B
51 50 eleq1d j = K j / i B K / i B
52 49 51 imbi12d j = K φ j S j / i B φ K S K / i B
53 nfv i φ j S
54 nfcsb1v _ i j / i B
55 54 nfel1 i j / i B
56 53 55 nfim i φ j S j / i B
57 eleq1 i = j i S j S
58 57 anbi2d i = j φ i S φ j S
59 csbeq1a i = j B = j / i B
60 59 eleq1d i = j B j / i B
61 58 60 imbi12d i = j φ i S B φ j S j / i B
62 56 61 4 chvarfv φ j S j / i B
63 52 62 vtoclg K S φ K S K / i B
64 63 anabsi7 φ K S K / i B
65 3 64 mpdan φ K / i B
66 sumsns K S K / i B i K B = K / i B
67 3 65 66 syl2anc φ i K B = K / i B
68 26 47 67 3eqtr3d φ i S F i B = K / i B