Metamath Proof Explorer


Theorem fmlasuc0

Description: The valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 18-Sep-2023)

Ref Expression
Assertion fmlasuc0 NωFmlasucN=FmlaNx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu

Proof

Step Hyp Ref Expression
1 df-fmla Fmla=nsucωdomSatn
2 fveq2 n=sucNSatn=SatsucN
3 2 dmeqd n=sucNdomSatn=domSatsucN
4 omsucelsucb NωsucNsucω
5 4 biimpi NωsucNsucω
6 fvex SatsucNV
7 6 dmex domSatsucNV
8 7 a1i NωdomSatsucNV
9 1 3 5 8 fvmptd3 NωFmlasucN=domSatsucN
10 satf0sucom sucNsucωSatsucN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN
11 5 10 syl NωSatsucN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN
12 nnon NωNOn
13 rdgsuc NOnrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
14 12 13 syl NωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
15 11 14 eqtrd NωSatsucN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
16 15 dmeqd NωdomSatsucN=domfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
17 elelsuc NωNsucω
18 satf0sucom NsucωSatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
19 18 eqcomd NsucωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=SatN
20 17 19 syl NωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=SatN
21 20 fveq2d NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuSatN
22 eqidd NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu
23 id f=SatNf=SatN
24 rexeq f=SatNvfx=1stu𝑔1stvvSatNx=1stu𝑔1stv
25 24 orbi1d f=SatNvfx=1stu𝑔1stviωx=𝑔i1stuvSatNx=1stu𝑔1stviωx=𝑔i1stu
26 25 rexeqbi1dv f=SatNufvfx=1stu𝑔1stviωx=𝑔i1stuuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
27 26 anbi2d f=SatNy=ufvfx=1stu𝑔1stviωx=𝑔i1stuy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
28 27 opabbidv f=SatNxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=xy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
29 23 28 uneq12d f=SatNfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=SatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
30 29 adantl Nωf=SatNfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=SatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
31 fvex SatNV
32 31 a1i NωSatNV
33 peano1 ω
34 eleq1 y=yωω
35 33 34 mpbiri y=yω
36 35 adantr y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuyω
37 36 pm4.71ri y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuyωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
38 37 opabbii xy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=xy|yωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
39 omex ωV
40 id ωVωV
41 unab x|vSatNx=1stu𝑔1stvx|iωx=𝑔i1stu=x|vSatNx=1stu𝑔1stviωx=𝑔i1stu
42 31 abrexex x|vSatNx=1stu𝑔1stvV
43 39 abrexex x|iωx=𝑔i1stuV
44 42 43 unex x|vSatNx=1stu𝑔1stvx|iωx=𝑔i1stuV
45 41 44 eqeltrri x|vSatNx=1stu𝑔1stviωx=𝑔i1stuV
46 45 a1i ωVyωuSatNx|vSatNx=1stu𝑔1stviωx=𝑔i1stuV
47 46 ralrimiva ωVyωuSatNx|vSatNx=1stu𝑔1stviωx=𝑔i1stuV
48 abrexex2g SatNVuSatNx|vSatNx=1stu𝑔1stviωx=𝑔i1stuVx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
49 31 47 48 sylancr ωVyωx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
50 40 49 opabex3rd ωVxy|yωuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
51 39 50 ax-mp xy|yωuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
52 simpr y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
53 52 anim2i yωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuyωuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
54 53 ssopab2i xy|yωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuxy|yωuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
55 51 54 ssexi xy|yωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
56 55 a1i Nωxy|yωy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
57 38 56 eqeltrid Nωxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
58 unexg SatNVxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuVSatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
59 31 57 58 sylancr NωSatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuV
60 22 30 32 59 fvmptd NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuSatN=SatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
61 21 60 eqtrd NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=SatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
62 61 dmeqd NωdomfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=domSatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
63 dmun domSatNxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=domSatNdomxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
64 62 63 eqtrdi NωdomfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=domSatNdomxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
65 fmlafv NsucωFmlaN=domSatN
66 17 65 syl NωFmlaN=domSatN
67 66 eqcomd NωdomSatN=FmlaN
68 dmopab domxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=x|yy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
69 68 a1i Nωdomxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=x|yy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
70 0ex V
71 70 isseti yy=
72 19.41v yy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuyy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
73 71 72 mpbiran yy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stuuSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
74 73 abbii x|yy=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=x|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
75 69 74 eqtrdi Nωdomxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=x|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
76 67 75 uneq12d NωdomSatNdomxy|y=uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu=FmlaNx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
77 64 76 eqtrd NωdomfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=FmlaNx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu
78 9 16 77 3eqtrd NωFmlasucN=FmlaNx|uSatNvSatNx=1stu𝑔1stviωx=𝑔i1stu