Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
fmlasuc0
Next ⟩
fmlafvel
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmlasuc0
Description:
The valid Godel formulas of height
( N + 1 )
.
(Contributed by
AV
, 18-Sep-2023)
Ref
Expression
Assertion
fmlasuc0
ω
ω
⊢
N
∈
ω
→
Fmla
suc
N
=
Fmla
N
∪
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
Proof
Step
Hyp
Ref
Expression
1
df-fmla
ω
⊢
Fmla
=
n
∈
suc
ω
⟼
dom
∅
Sat
∅
n
2
fveq2
⊢
n
=
suc
N
→
∅
Sat
∅
n
=
∅
Sat
∅
suc
N
3
2
dmeqd
⊢
n
=
suc
N
→
dom
∅
Sat
∅
n
=
dom
∅
Sat
∅
suc
N
4
omsucelsucb
ω
ω
⊢
N
∈
ω
↔
suc
N
∈
suc
ω
5
4
biimpi
ω
ω
⊢
N
∈
ω
→
suc
N
∈
suc
ω
6
fvex
⊢
∅
Sat
∅
suc
N
∈
V
7
6
dmex
⊢
dom
∅
Sat
∅
suc
N
∈
V
8
7
a1i
ω
⊢
N
∈
ω
→
dom
∅
Sat
∅
suc
N
∈
V
9
1
3
5
8
fvmptd3
ω
⊢
N
∈
ω
→
Fmla
suc
N
=
dom
∅
Sat
∅
suc
N
10
satf0sucom
ω
ω
ω
ω
⊢
suc
N
∈
suc
ω
→
∅
Sat
∅
suc
N
=
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
suc
N
11
5
10
syl
ω
ω
ω
ω
⊢
N
∈
ω
→
∅
Sat
∅
suc
N
=
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
suc
N
12
nnon
ω
⊢
N
∈
ω
→
N
∈
On
13
rdgsuc
ω
ω
ω
ω
ω
ω
ω
⊢
N
∈
On
→
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
suc
N
=
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
14
12
13
syl
ω
ω
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
suc
N
=
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
15
11
14
eqtrd
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
∅
Sat
∅
suc
N
=
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
16
15
dmeqd
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
dom
∅
Sat
∅
suc
N
=
dom
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
17
elelsuc
ω
ω
⊢
N
∈
ω
→
N
∈
suc
ω
18
satf0sucom
ω
ω
ω
ω
⊢
N
∈
suc
ω
→
∅
Sat
∅
N
=
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
19
18
eqcomd
ω
ω
ω
ω
⊢
N
∈
suc
ω
→
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
∅
Sat
∅
N
20
17
19
syl
ω
ω
ω
ω
⊢
N
∈
ω
→
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
∅
Sat
∅
N
21
20
fveq2d
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∅
Sat
∅
N
22
eqidd
ω
ω
ω
⊢
N
∈
ω
→
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
23
id
⊢
f
=
∅
Sat
∅
N
→
f
=
∅
Sat
∅
N
24
rexeq
⊢
f
=
∅
Sat
∅
N
→
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
↔
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
25
24
orbi1d
ω
ω
⊢
f
=
∅
Sat
∅
N
→
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
26
25
rexeqbi1dv
ω
ω
⊢
f
=
∅
Sat
∅
N
→
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
27
26
anbi2d
ω
ω
⊢
f
=
∅
Sat
∅
N
→
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
28
27
opabbidv
ω
ω
⊢
f
=
∅
Sat
∅
N
→
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
29
23
28
uneq12d
ω
ω
⊢
f
=
∅
Sat
∅
N
→
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
30
29
adantl
ω
ω
ω
⊢
N
∈
ω
∧
f
=
∅
Sat
∅
N
→
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
31
fvex
⊢
∅
Sat
∅
N
∈
V
32
31
a1i
ω
⊢
N
∈
ω
→
∅
Sat
∅
N
∈
V
33
peano1
ω
⊢
∅
∈
ω
34
eleq1
ω
ω
⊢
y
=
∅
→
y
∈
ω
↔
∅
∈
ω
35
33
34
mpbiri
ω
⊢
y
=
∅
→
y
∈
ω
36
35
adantr
ω
ω
⊢
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
y
∈
ω
37
36
pm4.71ri
ω
ω
ω
⊢
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
38
37
opabbii
ω
ω
ω
⊢
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
y
|
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
39
omex
ω
⊢
ω
∈
V
40
id
ω
ω
⊢
ω
∈
V
→
ω
∈
V
41
unab
ω
ω
⊢
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∪
x
|
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
42
31
abrexex
⊢
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∈
V
43
39
abrexex
ω
⊢
x
|
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
44
42
43
unex
ω
⊢
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∪
x
|
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
45
41
44
eqeltrri
ω
⊢
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
46
45
a1i
ω
ω
ω
⊢
ω
∈
V
∧
y
∈
ω
∧
u
∈
∅
Sat
∅
N
→
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
47
46
ralrimiva
ω
ω
ω
⊢
ω
∈
V
∧
y
∈
ω
→
∀
u
∈
∅
Sat
∅
N
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
48
abrexex2g
ω
ω
⊢
∅
Sat
∅
N
∈
V
∧
∀
u
∈
∅
Sat
∅
N
x
|
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
→
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
49
31
47
48
sylancr
ω
ω
ω
⊢
ω
∈
V
∧
y
∈
ω
→
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
50
40
49
opabex3rd
ω
ω
ω
⊢
ω
∈
V
→
x
y
|
y
∈
ω
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
51
39
50
ax-mp
ω
ω
⊢
x
y
|
y
∈
ω
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
52
simpr
ω
ω
⊢
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
53
52
anim2i
ω
ω
ω
ω
⊢
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
y
∈
ω
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
54
53
ssopab2i
ω
ω
ω
ω
⊢
x
y
|
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
⊆
x
y
|
y
∈
ω
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
55
51
54
ssexi
ω
ω
⊢
x
y
|
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
56
55
a1i
ω
ω
ω
⊢
N
∈
ω
→
x
y
|
y
∈
ω
∧
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
57
38
56
eqeltrid
ω
ω
⊢
N
∈
ω
→
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
58
unexg
ω
ω
⊢
∅
Sat
∅
N
∈
V
∧
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
→
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
59
31
57
58
sylancr
ω
ω
⊢
N
∈
ω
→
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∈
V
60
22
30
32
59
fvmptd
ω
ω
ω
⊢
N
∈
ω
→
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∅
Sat
∅
N
=
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
61
21
60
eqtrd
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
62
61
dmeqd
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
dom
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
dom
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
63
dmun
ω
ω
⊢
dom
∅
Sat
∅
N
∪
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
dom
∅
Sat
∅
N
∪
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
64
62
63
eqtrdi
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
dom
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
dom
∅
Sat
∅
N
∪
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
65
fmlafv
ω
⊢
N
∈
suc
ω
→
Fmla
N
=
dom
∅
Sat
∅
N
66
17
65
syl
ω
⊢
N
∈
ω
→
Fmla
N
=
dom
∅
Sat
∅
N
67
66
eqcomd
ω
⊢
N
∈
ω
→
dom
∅
Sat
∅
N
=
Fmla
N
68
dmopab
ω
ω
⊢
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
69
68
a1i
ω
ω
ω
⊢
N
∈
ω
→
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
70
0ex
⊢
∅
∈
V
71
70
isseti
⊢
∃
y
y
=
∅
72
19.41v
ω
ω
⊢
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
73
71
72
mpbiran
ω
ω
⊢
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
74
73
abbii
ω
ω
⊢
x
|
∃
y
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
75
69
74
eqtrdi
ω
ω
ω
⊢
N
∈
ω
→
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
76
67
75
uneq12d
ω
ω
ω
⊢
N
∈
ω
→
dom
∅
Sat
∅
N
∪
dom
x
y
|
y
=
∅
∧
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
Fmla
N
∪
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
77
64
76
eqtrd
ω
ω
ω
ω
ω
ω
⊢
N
∈
ω
→
dom
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
rec
f
∈
V
⟼
f
∪
x
y
|
y
=
∅
∧
∃
u
∈
f
∃
v
∈
f
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
x
y
|
y
=
∅
∧
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
N
=
Fmla
N
∪
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
78
9
16
77
3eqtrd
ω
ω
⊢
N
∈
ω
→
Fmla
suc
N
=
Fmla
N
∪
x
|
∃
u
∈
∅
Sat
∅
N
∃
v
∈
∅
Sat
∅
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u