Metamath Proof Explorer


Theorem fmptco1f1o

Description: The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021)

Ref Expression
Hypotheses fmptco1f1o.a A=RE
fmptco1f1o.b B=RD
fmptco1f1o.f F=fAfT
fmptco1f1o.d φDV
fmptco1f1o.e φEW
fmptco1f1o.r φRX
fmptco1f1o.t φT:D1-1 ontoE
Assertion fmptco1f1o φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 fmptco1f1o.a A=RE
2 fmptco1f1o.b B=RD
3 fmptco1f1o.f F=fAfT
4 fmptco1f1o.d φDV
5 fmptco1f1o.e φEW
6 fmptco1f1o.r φRX
7 fmptco1f1o.t φT:D1-1 ontoE
8 3 a1i φF=fAfT
9 6 adantr φfARX
10 4 adantr φfADV
11 simpr φfAfA
12 11 1 eleqtrdi φfAfRE
13 elmapi fREf:ER
14 12 13 syl φfAf:ER
15 f1of T:D1-1 ontoET:DE
16 7 15 syl φT:DE
17 16 adantr φfAT:DE
18 fco f:ERT:DEfT:DR
19 14 17 18 syl2anc φfAfT:DR
20 elmapg RXDVfTRDfT:DR
21 20 biimpar RXDVfT:DRfTRD
22 9 10 19 21 syl21anc φfAfTRD
23 22 2 eleqtrrdi φfAfTB
24 6 adantr φgBRX
25 5 adantr φgBEW
26 simpr φgBgB
27 26 2 eleqtrdi φgBgRD
28 elmapi gRDg:DR
29 27 28 syl φgBg:DR
30 f1ocnv T:D1-1 ontoET-1:E1-1 ontoD
31 f1of T-1:E1-1 ontoDT-1:ED
32 7 30 31 3syl φT-1:ED
33 32 adantr φgBT-1:ED
34 fco g:DRT-1:EDgT-1:ER
35 29 33 34 syl2anc φgBgT-1:ER
36 elmapg RXEWgT-1REgT-1:ER
37 36 biimpar RXEWgT-1:ERgT-1RE
38 24 25 35 37 syl21anc φgBgT-1RE
39 38 1 eleqtrrdi φgBgT-1A
40 coass gT-1T=gT-1T
41 7 ad2antrr φfAgBT:D1-1 ontoE
42 f1ococnv1 T:D1-1 ontoET-1T=ID
43 42 coeq2d T:D1-1 ontoEgT-1T=gID
44 41 43 syl φfAgBgT-1T=gID
45 29 adantlr φfAgBg:DR
46 fcoi1 g:DRgID=g
47 45 46 syl φfAgBgID=g
48 44 47 eqtrd φfAgBgT-1T=g
49 40 48 eqtr2id φfAgBg=gT-1T
50 49 eqeq1d φfAgBg=fTgT-1T=fT
51 eqcom gT-1T=fTfT=gT-1T
52 51 a1i φfAgBgT-1T=fTfT=gT-1T
53 f1ofo T:D1-1 ontoET:DontoE
54 41 53 syl φfAgBT:DontoE
55 simplr φfAgBfA
56 55 1 eleqtrdi φfAgBfRE
57 elmapfn fREfFnE
58 56 57 syl φfAgBfFnE
59 elmapfn gT-1REgT-1FnE
60 38 59 syl φgBgT-1FnE
61 60 adantlr φfAgBgT-1FnE
62 cocan2 T:DontoEfFnEgT-1FnEfT=gT-1Tf=gT-1
63 54 58 61 62 syl3anc φfAgBfT=gT-1Tf=gT-1
64 50 52 63 3bitrrd φfAgBf=gT-1g=fT
65 64 anasss φfAgBf=gT-1g=fT
66 8 23 39 65 f1o3d φF:A1-1 ontoBF-1=gBgT-1
67 66 simpld φF:A1-1 ontoB