Description: The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmptco1f1o.a | |
|
fmptco1f1o.b | |
||
fmptco1f1o.f | |
||
fmptco1f1o.d | |
||
fmptco1f1o.e | |
||
fmptco1f1o.r | |
||
fmptco1f1o.t | |
||
Assertion | fmptco1f1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptco1f1o.a | |
|
2 | fmptco1f1o.b | |
|
3 | fmptco1f1o.f | |
|
4 | fmptco1f1o.d | |
|
5 | fmptco1f1o.e | |
|
6 | fmptco1f1o.r | |
|
7 | fmptco1f1o.t | |
|
8 | 3 | a1i | |
9 | 6 | adantr | |
10 | 4 | adantr | |
11 | simpr | |
|
12 | 11 1 | eleqtrdi | |
13 | elmapi | |
|
14 | 12 13 | syl | |
15 | f1of | |
|
16 | 7 15 | syl | |
17 | 16 | adantr | |
18 | fco | |
|
19 | 14 17 18 | syl2anc | |
20 | elmapg | |
|
21 | 20 | biimpar | |
22 | 9 10 19 21 | syl21anc | |
23 | 22 2 | eleqtrrdi | |
24 | 6 | adantr | |
25 | 5 | adantr | |
26 | simpr | |
|
27 | 26 2 | eleqtrdi | |
28 | elmapi | |
|
29 | 27 28 | syl | |
30 | f1ocnv | |
|
31 | f1of | |
|
32 | 7 30 31 | 3syl | |
33 | 32 | adantr | |
34 | fco | |
|
35 | 29 33 34 | syl2anc | |
36 | elmapg | |
|
37 | 36 | biimpar | |
38 | 24 25 35 37 | syl21anc | |
39 | 38 1 | eleqtrrdi | |
40 | coass | |
|
41 | 7 | ad2antrr | |
42 | f1ococnv1 | |
|
43 | 42 | coeq2d | |
44 | 41 43 | syl | |
45 | 29 | adantlr | |
46 | fcoi1 | |
|
47 | 45 46 | syl | |
48 | 44 47 | eqtrd | |
49 | 40 48 | eqtr2id | |
50 | 49 | eqeq1d | |
51 | eqcom | |
|
52 | 51 | a1i | |
53 | f1ofo | |
|
54 | 41 53 | syl | |
55 | simplr | |
|
56 | 55 1 | eleqtrdi | |
57 | elmapfn | |
|
58 | 56 57 | syl | |
59 | elmapfn | |
|
60 | 38 59 | syl | |
61 | 60 | adantlr | |
62 | cocan2 | |
|
63 | 54 58 61 62 | syl3anc | |
64 | 50 52 63 | 3bitrrd | |
65 | 64 | anasss | |
66 | 8 23 39 65 | f1o3d | |
67 | 66 | simpld | |