Metamath Proof Explorer


Theorem fmuldfeqlem1

Description: induction step for the proof of fmuldfeq . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmuldfeqlem1.1 fφ
fmuldfeqlem1.2 gφ
fmuldfeqlem1.3 _tY
fmuldfeqlem1.5 P=fY,gYtTftgt
fmuldfeqlem1.6 F=tTi1MUit
fmuldfeqlem1.7 φTV
fmuldfeqlem1.8 φU:1MY
fmuldfeqlem1.9 φfYgYtTftgtY
fmuldfeqlem1.10 φN1M
fmuldfeqlem1.11 φN+11M
fmuldfeqlem1.12 φseq1PUNt=seq1×FtN
fmuldfeqlem1.13 φfYf:T
Assertion fmuldfeqlem1 φtTseq1PUN+1t=seq1×FtN+1

Proof

Step Hyp Ref Expression
1 fmuldfeqlem1.1 fφ
2 fmuldfeqlem1.2 gφ
3 fmuldfeqlem1.3 _tY
4 fmuldfeqlem1.5 P=fY,gYtTftgt
5 fmuldfeqlem1.6 F=tTi1MUit
6 fmuldfeqlem1.7 φTV
7 fmuldfeqlem1.8 φU:1MY
8 fmuldfeqlem1.9 φfYgYtTftgtY
9 fmuldfeqlem1.10 φN1M
10 fmuldfeqlem1.11 φN+11M
11 fmuldfeqlem1.12 φseq1PUNt=seq1×FtN
12 fmuldfeqlem1.13 φfYf:T
13 ovex 1MV
14 13 mptex i1MUitV
15 5 fvmpt2 tTi1MUitVFt=i1MUit
16 14 15 mpan2 tTFt=i1MUit
17 fveq2 i=jUi=Uj
18 17 fveq1d i=jUit=Ujt
19 18 cbvmptv i1MUit=j1MUjt
20 16 19 eqtrdi tTFt=j1MUjt
21 20 adantl φtTFt=j1MUjt
22 fveq2 j=N+1Uj=UN+1
23 22 fveq1d j=N+1Ujt=UN+1t
24 23 adantl φtTj=N+1Ujt=UN+1t
25 10 adantr φtTN+11M
26 7 10 ffvelcdmd φUN+1Y
27 26 ancli φφUN+1Y
28 nfcv _fUN+1
29 nfv fUN+1Y
30 1 29 nfan fφUN+1Y
31 nfv fUN+1:T
32 30 31 nfim fφUN+1YUN+1:T
33 eleq1 f=UN+1fYUN+1Y
34 33 anbi2d f=UN+1φfYφUN+1Y
35 feq1 f=UN+1f:TUN+1:T
36 34 35 imbi12d f=UN+1φfYf:TφUN+1YUN+1:T
37 28 32 36 12 vtoclgf UN+1YφUN+1YUN+1:T
38 26 27 37 sylc φUN+1:T
39 38 ffvelcdmda φtTUN+1t
40 21 24 25 39 fvmptd φtTFtN+1=UN+1t
41 40 oveq2d φtTseq1×FtNFtN+1=seq1×FtNUN+1t
42 elfzuz N1MN1
43 9 42 syl φN1
44 seqp1 N1seq1×FtN+1=seq1×FtNFtN+1
45 43 44 syl φseq1×FtN+1=seq1×FtNFtN+1
46 45 adantr φtTseq1×FtN+1=seq1×FtNFtN+1
47 seqp1 N1seq1PUN+1=seq1PUNPUN+1
48 43 47 syl φseq1PUN+1=seq1PUNPUN+1
49 nfcv _htTftgt
50 nfcv _ltTftgt
51 nfcv _ftThtlt
52 nfcv _gtThtlt
53 fveq1 f=hft=ht
54 fveq1 g=lgt=lt
55 53 54 oveqan12d f=hg=lftgt=htlt
56 55 mpteq2dv f=hg=ltTftgt=tThtlt
57 49 50 51 52 56 cbvmpo fY,gYtTftgt=hY,lYtThtlt
58 4 57 eqtri P=hY,lYtThtlt
59 58 a1i φP=hY,lYtThtlt
60 nfcv _t1
61 nfmpt1 _ttTftgt
62 3 3 61 nfmpo _tfY,gYtTftgt
63 4 62 nfcxfr _tP
64 nfcv _tU
65 60 63 64 nfseq _tseq1PU
66 nfcv _tN
67 65 66 nffv _tseq1PUN
68 67 nfeq2 th=seq1PUN
69 nfv tl=UN+1
70 68 69 nfan th=seq1PUNl=UN+1
71 fveq1 h=seq1PUNht=seq1PUNt
72 71 ad2antrr h=seq1PUNl=UN+1tTht=seq1PUNt
73 fveq1 l=UN+1lt=UN+1t
74 73 ad2antlr h=seq1PUNl=UN+1tTlt=UN+1t
75 72 74 oveq12d h=seq1PUNl=UN+1tThtlt=seq1PUNtUN+1t
76 70 75 mpteq2da h=seq1PUNl=UN+1tThtlt=tTseq1PUNtUN+1t
77 76 adantl φh=seq1PUNl=UN+1tThtlt=tTseq1PUNtUN+1t
78 eqid seq1PUN=seq1PUN
79 3simpc φhYlYhYlY
80 nfcv _fh
81 nfcv _gh
82 nfcv _gl
83 nfv fhY
84 nfv fgY
85 1 83 84 nf3an fφhYgY
86 nfv ftThtgtY
87 85 86 nfim fφhYgYtThtgtY
88 nfv ghY
89 nfv glY
90 2 88 89 nf3an gφhYlY
91 nfv gtThtltY
92 90 91 nfim gφhYlYtThtltY
93 eleq1 f=hfYhY
94 93 3anbi2d f=hφfYgYφhYgY
95 53 oveq1d f=hftgt=htgt
96 95 mpteq2dv f=htTftgt=tThtgt
97 96 eleq1d f=htTftgtYtThtgtY
98 94 97 imbi12d f=hφfYgYtTftgtYφhYgYtThtgtY
99 eleq1 g=lgYlY
100 99 3anbi3d g=lφhYgYφhYlY
101 54 oveq2d g=lhtgt=htlt
102 101 mpteq2dv g=ltThtgt=tThtlt
103 102 eleq1d g=ltThtgtYtThtltY
104 100 103 imbi12d g=lφhYgYtThtgtYφhYlYtThtltY
105 80 81 82 87 92 98 104 8 vtocl2gf hYlYφhYlYtThtltY
106 79 105 mpcom φhYlYtThtltY
107 58 78 9 7 106 6 fmulcl φseq1PUNY
108 mptexg TVtTseq1PUNtUN+1tV
109 6 108 syl φtTseq1PUNtUN+1tV
110 59 77 107 26 109 ovmpod φseq1PUNPUN+1=tTseq1PUNtUN+1t
111 48 110 eqtrd φseq1PUN+1=tTseq1PUNtUN+1t
112 107 ancli φφseq1PUNY
113 nfcv _f1
114 nfmpo1 _ffY,gYtTftgt
115 4 114 nfcxfr _fP
116 nfcv _fU
117 113 115 116 nfseq _fseq1PU
118 nfcv _fN
119 117 118 nffv _fseq1PUN
120 119 nfel1 fseq1PUNY
121 1 120 nfan fφseq1PUNY
122 nfcv _fT
123 nfcv _f
124 119 122 123 nff fseq1PUN:T
125 121 124 nfim fφseq1PUNYseq1PUN:T
126 eleq1 f=seq1PUNfYseq1PUNY
127 126 anbi2d f=seq1PUNφfYφseq1PUNY
128 feq1 f=seq1PUNf:Tseq1PUN:T
129 127 128 imbi12d f=seq1PUNφfYf:Tφseq1PUNYseq1PUN:T
130 119 125 129 12 vtoclgf seq1PUNYφseq1PUNYseq1PUN:T
131 107 112 130 sylc φseq1PUN:T
132 131 ffvelcdmda φtTseq1PUNt
133 132 39 remulcld φtTseq1PUNtUN+1t
134 111 133 fvmpt2d φtTseq1PUN+1t=seq1PUNtUN+1t
135 11 oveq1d φseq1PUNtUN+1t=seq1×FtNUN+1t
136 135 adantr φtTseq1PUNtUN+1t=seq1×FtNUN+1t
137 134 136 eqtrd φtTseq1PUN+1t=seq1×FtNUN+1t
138 41 46 137 3eqtr4rd φtTseq1PUN+1t=seq1×FtN+1