Metamath Proof Explorer


Theorem fourierdlem69

Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem69.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem69.m φM
fourierdlem69.q φQPM
fourierdlem69.f φF:AB
fourierdlem69.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem69.r φi0..^MRFQiQi+1limQi
fourierdlem69.l φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem69 φF𝐿1

Proof

Step Hyp Ref Expression
1 fourierdlem69.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem69.m φM
3 fourierdlem69.q φQPM
4 fourierdlem69.f φF:AB
5 fourierdlem69.fcn φi0..^MFQiQi+1:QiQi+1cn
6 fourierdlem69.r φi0..^MRFQiQi+1limQi
7 fourierdlem69.l φi0..^MLFQiQi+1limQi+1
8 1 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
9 2 8 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
10 3 9 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
11 10 simprd φQ0=AQM=Bi0..^MQi<Qi+1
12 11 simpld φQ0=AQM=B
13 12 simpld φQ0=A
14 12 simprd φQM=B
15 13 14 oveq12d φQ0QM=AB
16 15 feq2d φF:Q0QMF:AB
17 4 16 mpbird φF:Q0QM
18 17 feqmptd φF=xQ0QMFx
19 nfv xφ
20 0zd φ0
21 nnuz =1
22 1e0p1 1=0+1
23 22 fveq2i 1=0+1
24 21 23 eqtri =0+1
25 2 24 eleqtrdi φM0+1
26 10 simpld φQ0M
27 elmapi Q0MQ:0M
28 26 27 syl φQ:0M
29 28 ffvelcdmda φi0MQi
30 11 simprd φi0..^MQi<Qi+1
31 30 r19.21bi φi0..^MQi<Qi+1
32 4 adantr φxQ0QMF:AB
33 simpr φxQ0QMxQ0QM
34 13 adantr φxQ0QMQ0=A
35 14 adantr φxQ0QMQM=B
36 34 35 oveq12d φxQ0QMQ0QM=AB
37 33 36 eleqtrd φxQ0QMxAB
38 32 37 ffvelcdmd φxQ0QMFx
39 28 adantr φi0..^MQ:0M
40 elfzofz i0..^Mi0M
41 40 adantl φi0..^Mi0M
42 39 41 ffvelcdmd φi0..^MQi
43 fzofzp1 i0..^Mi+10M
44 43 adantl φi0..^Mi+10M
45 39 44 ffvelcdmd φi0..^MQi+1
46 4 adantr φi0..^MF:AB
47 ioossicc QiQi+1QiQi+1
48 1 2 3 fourierdlem11 φABA<B
49 48 simp1d φA
50 49 rexrd φA*
51 50 adantr φi0..^MA*
52 48 simp2d φB
53 52 rexrd φB*
54 53 adantr φi0..^MB*
55 1 2 3 fourierdlem15 φQ:0MAB
56 55 adantr φi0..^MQ:0MAB
57 simpr φi0..^Mi0..^M
58 51 54 56 57 fourierdlem8 φi0..^MQiQi+1AB
59 47 58 sstrid φi0..^MQiQi+1AB
60 46 59 feqresmpt φi0..^MFQiQi+1=xQiQi+1Fx
61 60 5 eqeltrrd φi0..^MxQiQi+1Fx:QiQi+1cn
62 60 oveq1d φi0..^MFQiQi+1limQi+1=xQiQi+1FxlimQi+1
63 7 62 eleqtrd φi0..^MLxQiQi+1FxlimQi+1
64 60 oveq1d φi0..^MFQiQi+1limQi=xQiQi+1FxlimQi
65 6 64 eleqtrd φi0..^MRxQiQi+1FxlimQi
66 42 45 61 63 65 iblcncfioo φi0..^MxQiQi+1Fx𝐿1
67 46 adantr φi0..^MxQiQi+1F:AB
68 58 sselda φi0..^MxQiQi+1xAB
69 67 68 ffvelcdmd φi0..^MxQiQi+1Fx
70 42 45 66 69 ibliooicc φi0..^MxQiQi+1Fx𝐿1
71 19 20 25 29 31 38 70 iblspltprt φxQ0QMFx𝐿1
72 18 71 eqeltrd φF𝐿1