Description: A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprb.1 | |
|
fprb.2 | |
||
Assertion | fprb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprb.1 | |
|
2 | fprb.2 | |
|
3 | 1 | prid1 | |
4 | ffvelcdm | |
|
5 | 3 4 | mpan2 | |
6 | 5 | adantr | |
7 | 2 | prid2 | |
8 | ffvelcdm | |
|
9 | 7 8 | mpan2 | |
10 | 9 | adantr | |
11 | fvex | |
|
12 | 1 11 | fvpr1 | |
13 | fvex | |
|
14 | 2 13 | fvpr2 | |
15 | fveq2 | |
|
16 | fveq2 | |
|
17 | 15 16 | eqeq12d | |
18 | eqcom | |
|
19 | 17 18 | bitrdi | |
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | eqeq12d | |
23 | eqcom | |
|
24 | 22 23 | bitrdi | |
25 | 1 2 19 24 | ralpr | |
26 | 12 14 25 | sylanbrc | |
27 | 26 | adantl | |
28 | ffn | |
|
29 | 1 2 11 13 | fpr | |
30 | 29 | ffnd | |
31 | eqfnfv | |
|
32 | 28 30 31 | syl2an | |
33 | 27 32 | mpbird | |
34 | opeq2 | |
|
35 | 34 | preq1d | |
36 | 35 | eqeq2d | |
37 | opeq2 | |
|
38 | 37 | preq2d | |
39 | 38 | eqeq2d | |
40 | 36 39 | rspc2ev | |
41 | 6 10 33 40 | syl3anc | |
42 | 41 | expcom | |
43 | vex | |
|
44 | vex | |
|
45 | 1 2 43 44 | fpr | |
46 | prssi | |
|
47 | fss | |
|
48 | 45 46 47 | syl2an | |
49 | 48 | ex | |
50 | feq1 | |
|
51 | 50 | biimprcd | |
52 | 49 51 | syl6 | |
53 | 52 | rexlimdvv | |
54 | 42 53 | impbid | |