| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodf1o.1 |  | 
						
							| 2 |  | fprodf1o.2 |  | 
						
							| 3 |  | fprodf1o.3 |  | 
						
							| 4 |  | fprodf1o.4 |  | 
						
							| 5 |  | fprodf1o.5 |  | 
						
							| 6 |  | prod0 |  | 
						
							| 7 | 3 | adantr |  | 
						
							| 8 |  | f1oeq2 |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 7 9 | mpbid |  | 
						
							| 11 |  | f1ofo |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | fo00 |  | 
						
							| 14 | 13 | simprbi |  | 
						
							| 15 | 12 14 | syl |  | 
						
							| 16 | 15 | prodeq1d |  | 
						
							| 17 |  | prodeq1 |  | 
						
							| 18 |  | prod0 |  | 
						
							| 19 | 17 18 | eqtrdi |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 6 16 20 | 3eqtr4a |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 |  | 2fveq3 |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 |  | f1of |  | 
						
							| 27 | 3 26 | syl |  | 
						
							| 28 | 27 | ffvelcdmda |  | 
						
							| 29 | 5 | fmpttd |  | 
						
							| 30 | 29 | ffvelcdmda |  | 
						
							| 31 | 28 30 | syldan |  | 
						
							| 32 | 31 | adantlr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | f1oco |  | 
						
							| 35 | 3 33 34 | syl2an |  | 
						
							| 36 |  | f1of |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | fvco3 |  | 
						
							| 39 | 37 38 | sylan |  | 
						
							| 40 |  | f1of |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 |  | fvco3 |  | 
						
							| 44 | 42 43 | sylan |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 39 45 | eqtrd |  | 
						
							| 47 | 23 24 25 32 46 | fprod |  | 
						
							| 48 | 27 | ffvelcdmda |  | 
						
							| 49 | 4 48 | eqeltrrd |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 1 50 | fvmpti |  | 
						
							| 52 | 49 51 | syl |  | 
						
							| 53 | 4 | fveq2d |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 | 54 | fvmpt2i |  | 
						
							| 56 | 55 | adantl |  | 
						
							| 57 | 52 53 56 | 3eqtr4rd |  | 
						
							| 58 | 57 | ralrimiva |  | 
						
							| 59 |  | nffvmpt1 |  | 
						
							| 60 | 59 | nfeq1 |  | 
						
							| 61 |  | fveq2 |  | 
						
							| 62 |  | 2fveq3 |  | 
						
							| 63 | 61 62 | eqeq12d |  | 
						
							| 64 | 60 63 | rspc |  | 
						
							| 65 | 58 64 | mpan9 |  | 
						
							| 66 | 65 | adantlr |  | 
						
							| 67 | 66 | prodeq2dv |  | 
						
							| 68 |  | fveq2 |  | 
						
							| 69 | 29 | adantr |  | 
						
							| 70 | 69 | ffvelcdmda |  | 
						
							| 71 | 68 24 35 70 39 | fprod |  | 
						
							| 72 | 47 67 71 | 3eqtr4rd |  | 
						
							| 73 |  | prodfc |  | 
						
							| 74 |  | prodfc |  | 
						
							| 75 | 72 73 74 | 3eqtr3g |  | 
						
							| 76 | 75 | expr |  | 
						
							| 77 | 76 | exlimdv |  | 
						
							| 78 | 77 | expimpd |  | 
						
							| 79 |  | fz1f1o |  | 
						
							| 80 | 2 79 | syl |  | 
						
							| 81 | 22 78 80 | mpjaod |  |