Metamath Proof Explorer


Theorem fprodf1o

Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017)

Ref Expression
Hypotheses fprodf1o.1 k=GB=D
fprodf1o.2 φCFin
fprodf1o.3 φF:C1-1 ontoA
fprodf1o.4 φnCFn=G
fprodf1o.5 φkAB
Assertion fprodf1o φkAB=nCD

Proof

Step Hyp Ref Expression
1 fprodf1o.1 k=GB=D
2 fprodf1o.2 φCFin
3 fprodf1o.3 φF:C1-1 ontoA
4 fprodf1o.4 φnCFn=G
5 fprodf1o.5 φkAB
6 prod0 kB=1
7 3 adantr φC=F:C1-1 ontoA
8 f1oeq2 C=F:C1-1 ontoAF:1-1 ontoA
9 8 adantl φC=F:C1-1 ontoAF:1-1 ontoA
10 7 9 mpbid φC=F:1-1 ontoA
11 f1ofo F:1-1 ontoAF:ontoA
12 10 11 syl φC=F:ontoA
13 fo00 F:ontoAF=A=
14 13 simprbi F:ontoAA=
15 12 14 syl φC=A=
16 15 prodeq1d φC=kAB=kB
17 prodeq1 C=nCD=nD
18 prod0 nD=1
19 17 18 eqtrdi C=nCD=1
20 19 adantl φC=nCD=1
21 6 16 20 3eqtr4a φC=kAB=nCD
22 21 ex φC=kAB=nCD
23 2fveq3 m=fnkABFm=kABFfn
24 simprl φCf:1C1-1 ontoCC
25 simprr φCf:1C1-1 ontoCf:1C1-1 ontoC
26 f1of F:C1-1 ontoAF:CA
27 3 26 syl φF:CA
28 27 ffvelcdmda φmCFmA
29 5 fmpttd φkAB:A
30 29 ffvelcdmda φFmAkABFm
31 28 30 syldan φmCkABFm
32 31 adantlr φCf:1C1-1 ontoCmCkABFm
33 simpr Cf:1C1-1 ontoCf:1C1-1 ontoC
34 f1oco F:C1-1 ontoAf:1C1-1 ontoCFf:1C1-1 ontoA
35 3 33 34 syl2an φCf:1C1-1 ontoCFf:1C1-1 ontoA
36 f1of Ff:1C1-1 ontoAFf:1CA
37 35 36 syl φCf:1C1-1 ontoCFf:1CA
38 fvco3 Ff:1CAn1CkABFfn=kABFfn
39 37 38 sylan φCf:1C1-1 ontoCn1CkABFfn=kABFfn
40 f1of f:1C1-1 ontoCf:1CC
41 40 adantl Cf:1C1-1 ontoCf:1CC
42 41 adantl φCf:1C1-1 ontoCf:1CC
43 fvco3 f:1CCn1CFfn=Ffn
44 42 43 sylan φCf:1C1-1 ontoCn1CFfn=Ffn
45 44 fveq2d φCf:1C1-1 ontoCn1CkABFfn=kABFfn
46 39 45 eqtrd φCf:1C1-1 ontoCn1CkABFfn=kABFfn
47 23 24 25 32 46 fprod φCf:1C1-1 ontoCmCkABFm=seq1×kABFfC
48 27 ffvelcdmda φnCFnA
49 4 48 eqeltrrd φnCGA
50 eqid kAB=kAB
51 1 50 fvmpti GAkABG=ID
52 49 51 syl φnCkABG=ID
53 4 fveq2d φnCkABFn=kABG
54 eqid nCD=nCD
55 54 fvmpt2i nCnCDn=ID
56 55 adantl φnCnCDn=ID
57 52 53 56 3eqtr4rd φnCnCDn=kABFn
58 57 ralrimiva φnCnCDn=kABFn
59 nffvmpt1 _nnCDm
60 59 nfeq1 nnCDm=kABFm
61 fveq2 n=mnCDn=nCDm
62 2fveq3 n=mkABFn=kABFm
63 61 62 eqeq12d n=mnCDn=kABFnnCDm=kABFm
64 60 63 rspc mCnCnCDn=kABFnnCDm=kABFm
65 58 64 mpan9 φmCnCDm=kABFm
66 65 adantlr φCf:1C1-1 ontoCmCnCDm=kABFm
67 66 prodeq2dv φCf:1C1-1 ontoCmCnCDm=mCkABFm
68 fveq2 m=FfnkABm=kABFfn
69 29 adantr φCf:1C1-1 ontoCkAB:A
70 69 ffvelcdmda φCf:1C1-1 ontoCmAkABm
71 68 24 35 70 39 fprod φCf:1C1-1 ontoCmAkABm=seq1×kABFfC
72 47 67 71 3eqtr4rd φCf:1C1-1 ontoCmAkABm=mCnCDm
73 prodfc mAkABm=kAB
74 prodfc mCnCDm=nCD
75 72 73 74 3eqtr3g φCf:1C1-1 ontoCkAB=nCD
76 75 expr φCf:1C1-1 ontoCkAB=nCD
77 76 exlimdv φCff:1C1-1 ontoCkAB=nCD
78 77 expimpd φCff:1C1-1 ontoCkAB=nCD
79 fz1f1o CFinC=Cff:1C1-1 ontoC
80 2 79 syl φC=Cff:1C1-1 ontoC
81 22 78 80 mpjaod φkAB=nCD