Metamath Proof Explorer


Theorem ftc1cn

Description: Strengthen the assumptions of ftc1 to when the function F is continuous on the entire interval ( A , B ) ; in this case we can calculate _D G exactly. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1cn.g G=xABAxFtdt
ftc1cn.a φA
ftc1cn.b φB
ftc1cn.le φAB
ftc1cn.f φF:ABcn
ftc1cn.i φF𝐿1
Assertion ftc1cn φDG=F

Proof

Step Hyp Ref Expression
1 ftc1cn.g G=xABAxFtdt
2 ftc1cn.a φA
3 ftc1cn.b φB
4 ftc1cn.le φAB
5 ftc1cn.f φF:ABcn
6 ftc1cn.i φF𝐿1
7 dvf G:domG
8 7 a1i φG:domG
9 8 ffund φFunG
10 ax-resscn
11 10 a1i φ
12 ssidd φABAB
13 ioossre AB
14 13 a1i φAB
15 cncff F:ABcnF:AB
16 5 15 syl φF:AB
17 1 2 3 4 12 14 6 16 ftc1lem2 φG:AB
18 iccssre ABAB
19 2 3 18 syl2anc φAB
20 eqid TopOpenfld=TopOpenfld
21 20 tgioo2 topGenran.=TopOpenfld𝑡
22 11 17 19 21 20 dvbssntr φdomGinttopGenran.AB
23 iccntr ABinttopGenran.AB=AB
24 2 3 23 syl2anc φinttopGenran.AB=AB
25 22 24 sseqtrd φdomGAB
26 2 adantr φyABA
27 3 adantr φyABB
28 4 adantr φyABAB
29 ssidd φyABABAB
30 13 a1i φyABAB
31 6 adantr φyABF𝐿1
32 simpr φyAByAB
33 13 10 sstri AB
34 ssid
35 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
36 20 cnfldtopon TopOpenfldTopOn
37 36 toponrestid TopOpenfld=TopOpenfld𝑡
38 20 35 37 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
39 33 34 38 mp2an ABcn=TopOpenfld𝑡ABCnTopOpenfld
40 5 39 eleqtrdi φFTopOpenfld𝑡ABCnTopOpenfld
41 40 adantr φyABFTopOpenfld𝑡ABCnTopOpenfld
42 33 a1i φAB
43 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
44 36 42 43 sylancr φTopOpenfld𝑡ABTopOnAB
45 toponuni TopOpenfld𝑡ABTopOnABAB=TopOpenfld𝑡AB
46 44 45 syl φAB=TopOpenfld𝑡AB
47 46 eleq2d φyAByTopOpenfld𝑡AB
48 47 biimpa φyAByTopOpenfld𝑡AB
49 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
50 49 cncnpi FTopOpenfld𝑡ABCnTopOpenfldyTopOpenfld𝑡ABFTopOpenfld𝑡ABCnPTopOpenfldy
51 41 48 50 syl2anc φyABFTopOpenfld𝑡ABCnPTopOpenfldy
52 1 26 27 28 29 30 31 32 51 21 35 20 ftc1 φyAByGFy
53 vex yV
54 fvex FyV
55 53 54 breldm yGFyydomG
56 52 55 syl φyABydomG
57 25 56 eqelssd φdomG=AB
58 df-fn GFnABFunGdomG=AB
59 9 57 58 sylanbrc φGFnAB
60 16 ffnd φFFnAB
61 9 adantr φyABFunG
62 funbrfv FunGyGFyGy=Fy
63 61 52 62 sylc φyABGy=Fy
64 59 60 63 eqfnfvd φDG=F