Description: Strengthen the assumptions of ftc1 to when the function F is continuous on the entire interval ( A , B ) ; in this case we can calculate _D G exactly. (Contributed by Mario Carneiro, 1-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ftc1cn.g | |
|
ftc1cn.a | |
||
ftc1cn.b | |
||
ftc1cn.le | |
||
ftc1cn.f | |
||
ftc1cn.i | |
||
Assertion | ftc1cn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc1cn.g | |
|
2 | ftc1cn.a | |
|
3 | ftc1cn.b | |
|
4 | ftc1cn.le | |
|
5 | ftc1cn.f | |
|
6 | ftc1cn.i | |
|
7 | dvf | |
|
8 | 7 | a1i | |
9 | 8 | ffund | |
10 | ax-resscn | |
|
11 | 10 | a1i | |
12 | ssidd | |
|
13 | ioossre | |
|
14 | 13 | a1i | |
15 | cncff | |
|
16 | 5 15 | syl | |
17 | 1 2 3 4 12 14 6 16 | ftc1lem2 | |
18 | iccssre | |
|
19 | 2 3 18 | syl2anc | |
20 | eqid | |
|
21 | 20 | tgioo2 | |
22 | 11 17 19 21 20 | dvbssntr | |
23 | iccntr | |
|
24 | 2 3 23 | syl2anc | |
25 | 22 24 | sseqtrd | |
26 | 2 | adantr | |
27 | 3 | adantr | |
28 | 4 | adantr | |
29 | ssidd | |
|
30 | 13 | a1i | |
31 | 6 | adantr | |
32 | simpr | |
|
33 | 13 10 | sstri | |
34 | ssid | |
|
35 | eqid | |
|
36 | 20 | cnfldtopon | |
37 | 36 | toponrestid | |
38 | 20 35 37 | cncfcn | |
39 | 33 34 38 | mp2an | |
40 | 5 39 | eleqtrdi | |
41 | 40 | adantr | |
42 | 33 | a1i | |
43 | resttopon | |
|
44 | 36 42 43 | sylancr | |
45 | toponuni | |
|
46 | 44 45 | syl | |
47 | 46 | eleq2d | |
48 | 47 | biimpa | |
49 | eqid | |
|
50 | 49 | cncnpi | |
51 | 41 48 50 | syl2anc | |
52 | 1 26 27 28 29 30 31 32 51 21 35 20 | ftc1 | |
53 | vex | |
|
54 | fvex | |
|
55 | 53 54 | breldm | |
56 | 52 55 | syl | |
57 | 25 56 | eqelssd | |
58 | df-fn | |
|
59 | 9 57 58 | sylanbrc | |
60 | 16 | ffnd | |
61 | 9 | adantr | |
62 | funbrfv | |
|
63 | 61 52 62 | sylc | |
64 | 59 60 63 | eqfnfvd | |