Metamath Proof Explorer


Theorem ftc1lem2

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1a.f φF:D
Assertion ftc1lem2 φG:AB

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1a.f φF:D
9 fvexd φxABtAxFtV
10 3 adantr φxABB
11 10 rexrd φxABB*
12 elicc2 ABxABxAxxB
13 2 3 12 syl2anc φxABxAxxB
14 13 biimpa φxABxAxxB
15 14 simp3d φxABxB
16 iooss2 B*xBAxAB
17 11 15 16 syl2anc φxABAxAB
18 5 adantr φxABABD
19 17 18 sstrd φxABAxD
20 ioombl Axdomvol
21 20 a1i φxABAxdomvol
22 fvexd φxABtDFtV
23 8 feqmptd φF=tDFt
24 23 7 eqeltrrd φtDFt𝐿1
25 24 adantr φxABtDFt𝐿1
26 19 21 22 25 iblss φxABtAxFt𝐿1
27 9 26 itgcl φxABAxFtdt
28 27 1 fmptd φG:AB