Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|
2 |
|
ftc1.a |
|
3 |
|
ftc1.b |
|
4 |
|
ftc1.le |
|
5 |
|
ftc1.s |
|
6 |
|
ftc1.d |
|
7 |
|
ftc1.i |
|
8 |
|
ftc1a.f |
|
9 |
1 2 3 4 5 6 7 8
|
ftc1lem2 |
|
10 |
|
fvexd |
|
11 |
8
|
feqmptd |
|
12 |
11 7
|
eqeltrrd |
|
13 |
12
|
adantr |
|
14 |
|
simpr |
|
15 |
10 13 14
|
itgcn |
|
16 |
|
oveq12 |
|
17 |
16
|
fveq2d |
|
18 |
17
|
breq1d |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
oveqan12d |
|
22 |
21
|
fveq2d |
|
23 |
22
|
breq1d |
|
24 |
18 23
|
imbi12d |
|
25 |
24
|
ancoms |
|
26 |
|
oveq12 |
|
27 |
26
|
fveq2d |
|
28 |
27
|
breq1d |
|
29 |
|
fveq2 |
|
30 |
|
fveq2 |
|
31 |
29 30
|
oveqan12d |
|
32 |
31
|
fveq2d |
|
33 |
32
|
breq1d |
|
34 |
28 33
|
imbi12d |
|
35 |
34
|
ancoms |
|
36 |
|
iccssre |
|
37 |
2 3 36
|
syl2anc |
|
38 |
37
|
ad2antrr |
|
39 |
37
|
ad3antrrr |
|
40 |
|
simprr |
|
41 |
39 40
|
sseldd |
|
42 |
41
|
recnd |
|
43 |
|
simprl |
|
44 |
39 43
|
sseldd |
|
45 |
44
|
recnd |
|
46 |
42 45
|
abssubd |
|
47 |
46
|
breq1d |
|
48 |
9
|
ad3antrrr |
|
49 |
48 40
|
ffvelrnd |
|
50 |
48 43
|
ffvelrnd |
|
51 |
49 50
|
abssubd |
|
52 |
51
|
breq1d |
|
53 |
47 52
|
imbi12d |
|
54 |
|
simpr3 |
|
55 |
2
|
adantr |
|
56 |
3
|
adantr |
|
57 |
4
|
adantr |
|
58 |
5
|
adantr |
|
59 |
6
|
adantr |
|
60 |
7
|
adantr |
|
61 |
8
|
adantr |
|
62 |
|
simpr1 |
|
63 |
|
simpr2 |
|
64 |
1 55 56 57 58 59 60 61 62 63
|
ftc1lem1 |
|
65 |
54 64
|
mpdan |
|
66 |
65
|
adantlr |
|
67 |
66
|
ad2ant2r |
|
68 |
67
|
fveq2d |
|
69 |
|
fvexd |
|
70 |
2
|
ad3antrrr |
|
71 |
70
|
rexrd |
|
72 |
|
simprl1 |
|
73 |
3
|
ad3antrrr |
|
74 |
|
elicc2 |
|
75 |
70 73 74
|
syl2anc |
|
76 |
72 75
|
mpbid |
|
77 |
76
|
simp2d |
|
78 |
|
iooss1 |
|
79 |
71 77 78
|
syl2anc |
|
80 |
73
|
rexrd |
|
81 |
|
simprl2 |
|
82 |
|
elicc2 |
|
83 |
70 73 82
|
syl2anc |
|
84 |
81 83
|
mpbid |
|
85 |
84
|
simp3d |
|
86 |
|
iooss2 |
|
87 |
80 85 86
|
syl2anc |
|
88 |
79 87
|
sstrd |
|
89 |
5
|
ad3antrrr |
|
90 |
88 89
|
sstrd |
|
91 |
|
ioombl |
|
92 |
91
|
a1i |
|
93 |
|
fvexd |
|
94 |
8
|
feqmptd |
|
95 |
94 7
|
eqeltrrd |
|
96 |
95
|
ad3antrrr |
|
97 |
90 92 93 96
|
iblss |
|
98 |
69 97
|
itgcl |
|
99 |
98
|
abscld |
|
100 |
|
iblmbf |
|
101 |
97 100
|
syl |
|
102 |
101 69
|
mbfmptcl |
|
103 |
102
|
abscld |
|
104 |
69 97
|
iblabs |
|
105 |
103 104
|
itgrecl |
|
106 |
|
simprl |
|
107 |
106
|
ad2antrr |
|
108 |
107
|
rpred |
|
109 |
69 97
|
itgabs |
|
110 |
|
mblvol |
|
111 |
91 110
|
ax-mp |
|
112 |
|
ioossre |
|
113 |
|
ovolcl |
|
114 |
112 113
|
mp1i |
|
115 |
84
|
simp1d |
|
116 |
76
|
simp1d |
|
117 |
115 116
|
resubcld |
|
118 |
117
|
rexrd |
|
119 |
|
simprr |
|
120 |
119
|
ad2antrr |
|
121 |
120
|
rpxrd |
|
122 |
|
ioossicc |
|
123 |
|
iccssre |
|
124 |
116 115 123
|
syl2anc |
|
125 |
|
ovolss |
|
126 |
122 124 125
|
sylancr |
|
127 |
|
simprl3 |
|
128 |
|
ovolicc |
|
129 |
116 115 127 128
|
syl3anc |
|
130 |
126 129
|
breqtrd |
|
131 |
116 115 127
|
abssubge0d |
|
132 |
|
simprr |
|
133 |
131 132
|
eqbrtrrd |
|
134 |
114 118 121 130 133
|
xrlelttrd |
|
135 |
111 134
|
eqbrtrid |
|
136 |
|
sseq1 |
|
137 |
|
fveq2 |
|
138 |
137
|
breq1d |
|
139 |
136 138
|
anbi12d |
|
140 |
|
2fveq3 |
|
141 |
140
|
cbvitgv |
|
142 |
|
itgeq1 |
|
143 |
141 142
|
eqtrid |
|
144 |
143
|
breq1d |
|
145 |
139 144
|
imbi12d |
|
146 |
|
simplr |
|
147 |
145 146 92
|
rspcdva |
|
148 |
90 135 147
|
mp2and |
|
149 |
99 105 108 109 148
|
lelttrd |
|
150 |
68 149
|
eqbrtrd |
|
151 |
150
|
expr |
|
152 |
25 35 38 53 151
|
wlogle |
|
153 |
152
|
ralrimivva |
|
154 |
153
|
ex |
|
155 |
154
|
anassrs |
|
156 |
155
|
reximdva |
|
157 |
15 156
|
mpd |
|
158 |
|
r19.12 |
|
159 |
157 158
|
syl |
|
160 |
159
|
ralrimiva |
|
161 |
|
ralcom |
|
162 |
160 161
|
sylib |
|
163 |
|
ax-resscn |
|
164 |
37 163
|
sstrdi |
|
165 |
|
ssid |
|
166 |
|
elcncf2 |
|
167 |
164 165 166
|
sylancl |
|
168 |
9 162 167
|
mpbir2and |
|