Metamath Proof Explorer


Theorem fucoid

Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid2 . (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fucoid.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoid.t T = D FuncCat E × c C FuncCat D
fucoid.1 1 ˙ = Id T
fucoid.q Q = C FuncCat E
fucoid.i I = Id Q
fucoid.f φ F C Func D G
fucoid.k φ K D Func E L
fucoid.u φ U = K L F G
Assertion fucoid φ U P U 1 ˙ U = I O U

Proof

Step Hyp Ref Expression
1 fucoid.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fucoid.t T = D FuncCat E × c C FuncCat D
3 fucoid.1 1 ˙ = Id T
4 fucoid.q Q = C FuncCat E
5 fucoid.i I = Id Q
6 fucoid.f φ F C Func D G
7 fucoid.k φ K D Func E L
8 fucoid.u φ U = K L F G
9 ovex Id E K F x K F x K F x comp E K F x F x L F x Id D F x V
10 eqid x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x = x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x
11 9 10 fnmpti x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x Fn Base C
12 11 a1i φ x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x Fn Base C
13 7 funcrcl3 φ E Cat
14 eqid Base E = Base E
15 eqid Id E = Id E
16 14 15 cidfn E Cat Id E Fn Base E
17 13 16 syl φ Id E Fn Base E
18 eqid Base D = Base D
19 18 14 7 funcf1 φ K : Base D Base E
20 eqid Base C = Base C
21 20 18 6 funcf1 φ F : Base C Base D
22 19 21 fcod φ K F : Base C Base E
23 fnfco Id E Fn Base E K F : Base C Base E Id E K F Fn Base C
24 17 22 23 syl2anc φ Id E K F Fn Base C
25 2fveq3 x = w K F x = K F w
26 25 25 opeq12d x = w K F x K F x = K F w K F w
27 26 25 oveq12d x = w K F x K F x comp E K F x = K F w K F w comp E K F w
28 2fveq3 x = w Id E K F x = Id E K F w
29 fveq2 x = w F x = F w
30 29 29 oveq12d x = w F x L F x = F w L F w
31 fveq2 x = w Id D F x = Id D F w
32 30 31 fveq12d x = w F x L F x Id D F x = F w L F w Id D F w
33 27 28 32 oveq123d x = w Id E K F x K F x K F x comp E K F x F x L F x Id D F x = Id E K F w K F w K F w comp E K F w F w L F w Id D F w
34 simpr φ w Base C w Base C
35 ovexd φ w Base C Id E K F w K F w K F w comp E K F w F w L F w Id D F w V
36 10 33 34 35 fvmptd3 φ w Base C x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x w = Id E K F w K F w K F w comp E K F w F w L F w Id D F w
37 eqid Hom E = Hom E
38 13 adantr φ w Base C E Cat
39 19 adantr φ w Base C K : Base D Base E
40 21 ffvelcdmda φ w Base C F w Base D
41 39 40 ffvelcdmd φ w Base C K F w Base E
42 eqid comp E = comp E
43 14 37 15 38 41 catidcl φ w Base C Id E K F w K F w Hom E K F w
44 14 37 15 38 41 42 41 43 catlid φ w Base C Id E K F w K F w K F w comp E K F w Id E K F w = Id E K F w
45 39 40 fvco3d φ w Base C Id E K F w = Id E K F w
46 21 adantr φ w Base C F : Base C Base D
47 46 34 fvco3d φ w Base C Id D F w = Id D F w
48 47 fveq2d φ w Base C F w L F w Id D F w = F w L F w Id D F w
49 eqid Id D = Id D
50 7 adantr φ w Base C K D Func E L
51 18 49 15 50 40 funcid φ w Base C F w L F w Id D F w = Id E K F w
52 48 51 eqtrd φ w Base C F w L F w Id D F w = Id E K F w
53 45 52 oveq12d φ w Base C Id E K F w K F w K F w comp E K F w F w L F w Id D F w = Id E K F w K F w K F w comp E K F w Id E K F w
54 22 adantr φ w Base C K F : Base C Base E
55 54 34 fvco3d φ w Base C Id E K F w = Id E K F w
56 46 34 fvco3d φ w Base C K F w = K F w
57 56 fveq2d φ w Base C Id E K F w = Id E K F w
58 55 57 eqtrd φ w Base C Id E K F w = Id E K F w
59 44 53 58 3eqtr4d φ w Base C Id E K F w K F w K F w comp E K F w F w L F w Id D F w = Id E K F w
60 36 59 eqtrd φ w Base C x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x w = Id E K F w
61 12 24 60 eqfnfvd φ x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x = Id E K F
62 8 fveq2d φ 1 ˙ U = 1 ˙ K L F G
63 eqid D FuncCat E = D FuncCat E
64 7 funcrcl2 φ D Cat
65 63 64 13 fuccat φ D FuncCat E Cat
66 eqid C FuncCat D = C FuncCat D
67 6 funcrcl2 φ C Cat
68 66 67 64 fuccat φ C FuncCat D Cat
69 63 fucbas D Func E = Base D FuncCat E
70 66 fucbas C Func D = Base C FuncCat D
71 eqid Id D FuncCat E = Id D FuncCat E
72 eqid Id C FuncCat D = Id C FuncCat D
73 df-br K D Func E L K L D Func E
74 7 73 sylib φ K L D Func E
75 df-br F C Func D G F G C Func D
76 6 75 sylib φ F G C Func D
77 2 65 68 69 70 71 72 3 74 76 xpcid φ 1 ˙ K L F G = Id D FuncCat E K L Id C FuncCat D F G
78 63 71 15 74 fucid φ Id D FuncCat E K L = Id E 1 st K L
79 relfunc Rel D Func E
80 79 brrelex1i K D Func E L K V
81 7 80 syl φ K V
82 79 brrelex2i K D Func E L L V
83 7 82 syl φ L V
84 op1stg K V L V 1 st K L = K
85 81 83 84 syl2anc φ 1 st K L = K
86 85 coeq2d φ Id E 1 st K L = Id E K
87 78 86 eqtrd φ Id D FuncCat E K L = Id E K
88 66 72 49 76 fucid φ Id C FuncCat D F G = Id D 1 st F G
89 relfunc Rel C Func D
90 89 brrelex1i F C Func D G F V
91 6 90 syl φ F V
92 89 brrelex2i F C Func D G G V
93 6 92 syl φ G V
94 op1stg F V G V 1 st F G = F
95 91 93 94 syl2anc φ 1 st F G = F
96 95 coeq2d φ Id D 1 st F G = Id D F
97 88 96 eqtrd φ Id C FuncCat D F G = Id D F
98 87 97 opeq12d φ Id D FuncCat E K L Id C FuncCat D F G = Id E K Id D F
99 62 77 98 3eqtrd φ 1 ˙ U = Id E K Id D F
100 99 fveq2d φ U P U 1 ˙ U = U P U Id E K Id D F
101 df-ov Id E K U P U Id D F = U P U Id E K Id D F
102 100 101 eqtr4di φ U P U 1 ˙ U = Id E K U P U Id D F
103 eqid C Nat D = C Nat D
104 66 103 fuchom C Nat D = Hom C FuncCat D
105 70 104 72 68 76 catidcl φ Id C FuncCat D F G F G C Nat D F G
106 97 105 eqeltrrd φ Id D F F G C Nat D F G
107 eqid D Nat E = D Nat E
108 63 107 fuchom D Nat E = Hom D FuncCat E
109 69 108 71 65 74 catidcl φ Id D FuncCat E K L K L D Nat E K L
110 87 109 eqeltrrd φ Id E K K L D Nat E K L
111 1 8 8 106 110 fuco22 φ Id E K U P U Id D F = x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x
112 102 111 eqtrd φ U P U 1 ˙ U = x Base C Id E K F x K F x K F x comp E K F x F x L F x Id D F x
113 1 6 7 8 4 5 15 fuco11id φ I O U = Id E K F
114 61 112 113 3eqtr4d φ U P U 1 ˙ U = I O U