Description: Lemma for funpartfun . Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | funpartlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | vsnid | |
|
3 | eleq2 | |
|
4 | 2 3 | mpbiri | |
5 | n0i | |
|
6 | snprc | |
|
7 | 6 | biimpi | |
8 | 7 | imaeq2d | |
9 | ima0 | |
|
10 | 8 9 | eqtrdi | |
11 | 5 10 | nsyl2 | |
12 | 4 11 | syl | |
13 | 12 | exlimiv | |
14 | eleq1 | |
|
15 | sneq | |
|
16 | 15 | imaeq2d | |
17 | 16 | eqeq1d | |
18 | 17 | exbidv | |
19 | vex | |
|
20 | 19 | eldm | |
21 | brxp | |
|
22 | 19 21 | mpbiran | |
23 | elsingles | |
|
24 | 22 23 | bitri | |
25 | 24 | anbi2i | |
26 | brin | |
|
27 | 19.42v | |
|
28 | 25 26 27 | 3bitr4i | |
29 | 28 | exbii | |
30 | excom | |
|
31 | 29 30 | bitri | |
32 | exancom | |
|
33 | vsnex | |
|
34 | breq2 | |
|
35 | 33 34 | ceqsexv | |
36 | 19 33 | brco | |
37 | vex | |
|
38 | 19 37 | brsingle | |
39 | 38 | anbi1i | |
40 | 39 | exbii | |
41 | vsnex | |
|
42 | breq1 | |
|
43 | 41 42 | ceqsexv | |
44 | 41 33 | brimage | |
45 | eqcom | |
|
46 | 43 44 45 | 3bitri | |
47 | 36 40 46 | 3bitri | |
48 | 32 35 47 | 3bitri | |
49 | 48 | exbii | |
50 | 20 31 49 | 3bitri | |
51 | 14 18 50 | vtoclbg | |
52 | 1 13 51 | pm5.21nii | |