Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013) (Revised by Mario Carneiro, 7-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fzennn.1 | |
|
Assertion | fzennn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzennn.1 | |
|
2 | oveq2 | |
|
3 | fveq2 | |
|
4 | 2 3 | breq12d | |
5 | oveq2 | |
|
6 | fveq2 | |
|
7 | 5 6 | breq12d | |
8 | oveq2 | |
|
9 | fveq2 | |
|
10 | 8 9 | breq12d | |
11 | oveq2 | |
|
12 | fveq2 | |
|
13 | 11 12 | breq12d | |
14 | 0ex | |
|
15 | 14 | enref | |
16 | fz10 | |
|
17 | 0z | |
|
18 | 17 1 | om2uzf1oi | |
19 | peano1 | |
|
20 | 18 19 | pm3.2i | |
21 | 17 1 | om2uz0i | |
22 | f1ocnvfv | |
|
23 | 20 21 22 | mp2 | |
24 | 15 16 23 | 3brtr4i | |
25 | simpr | |
|
26 | ovex | |
|
27 | fvex | |
|
28 | en2sn | |
|
29 | 26 27 28 | mp2an | |
30 | 29 | a1i | |
31 | fzp1disj | |
|
32 | 31 | a1i | |
33 | f1ocnvdm | |
|
34 | 18 33 | mpan | |
35 | nn0uz | |
|
36 | 34 35 | eleq2s | |
37 | nnord | |
|
38 | ordirr | |
|
39 | 36 37 38 | 3syl | |
40 | 39 | adantr | |
41 | disjsn | |
|
42 | 40 41 | sylibr | |
43 | unen | |
|
44 | 25 30 32 42 43 | syl22anc | |
45 | 1z | |
|
46 | 1m1e0 | |
|
47 | 46 | fveq2i | |
48 | 35 47 | eqtr4i | |
49 | 48 | eleq2i | |
50 | 49 | biimpi | |
51 | fzsuc2 | |
|
52 | 45 50 51 | sylancr | |
53 | 52 | adantr | |
54 | peano2 | |
|
55 | 36 54 | syl | |
56 | 55 18 | jctil | |
57 | 17 1 | om2uzsuci | |
58 | 36 57 | syl | |
59 | 35 | eleq2i | |
60 | 59 | biimpi | |
61 | f1ocnvfv2 | |
|
62 | 18 60 61 | sylancr | |
63 | 62 | oveq1d | |
64 | 58 63 | eqtrd | |
65 | f1ocnvfv | |
|
66 | 56 64 65 | sylc | |
67 | 66 | adantr | |
68 | df-suc | |
|
69 | 67 68 | eqtrdi | |
70 | 44 53 69 | 3brtr4d | |
71 | 70 | ex | |
72 | 4 7 10 13 24 71 | nn0ind | |