Metamath Proof Explorer


Theorem fzennn

Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013) (Revised by Mario Carneiro, 7-Mar-2014)

Ref Expression
Hypothesis fzennn.1 G=recxVx+10ω
Assertion fzennn N01NG-1N

Proof

Step Hyp Ref Expression
1 fzennn.1 G=recxVx+10ω
2 oveq2 n=01n=10
3 fveq2 n=0G-1n=G-10
4 2 3 breq12d n=01nG-1n10G-10
5 oveq2 n=m1n=1m
6 fveq2 n=mG-1n=G-1m
7 5 6 breq12d n=m1nG-1n1mG-1m
8 oveq2 n=m+11n=1m+1
9 fveq2 n=m+1G-1n=G-1m+1
10 8 9 breq12d n=m+11nG-1n1m+1G-1m+1
11 oveq2 n=N1n=1N
12 fveq2 n=NG-1n=G-1N
13 11 12 breq12d n=N1nG-1n1NG-1N
14 0ex V
15 14 enref
16 fz10 10=
17 0z 0
18 17 1 om2uzf1oi G:ω1-1 onto0
19 peano1 ω
20 18 19 pm3.2i G:ω1-1 onto0ω
21 17 1 om2uz0i G=0
22 f1ocnvfv G:ω1-1 onto0ωG=0G-10=
23 20 21 22 mp2 G-10=
24 15 16 23 3brtr4i 10G-10
25 simpr m01mG-1m1mG-1m
26 ovex m+1V
27 fvex G-1mV
28 en2sn m+1VG-1mVm+1G-1m
29 26 27 28 mp2an m+1G-1m
30 29 a1i m01mG-1mm+1G-1m
31 fzp1disj 1mm+1=
32 31 a1i m01mG-1m1mm+1=
33 f1ocnvdm G:ω1-1 onto0m0G-1mω
34 18 33 mpan m0G-1mω
35 nn0uz 0=0
36 34 35 eleq2s m0G-1mω
37 nnord G-1mωOrdG-1m
38 ordirr OrdG-1m¬G-1mG-1m
39 36 37 38 3syl m0¬G-1mG-1m
40 39 adantr m01mG-1m¬G-1mG-1m
41 disjsn G-1mG-1m=¬G-1mG-1m
42 40 41 sylibr m01mG-1mG-1mG-1m=
43 unen 1mG-1mm+1G-1m1mm+1=G-1mG-1m=1mm+1G-1mG-1m
44 25 30 32 42 43 syl22anc m01mG-1m1mm+1G-1mG-1m
45 1z 1
46 1m1e0 11=0
47 46 fveq2i 11=0
48 35 47 eqtr4i 0=11
49 48 eleq2i m0m11
50 49 biimpi m0m11
51 fzsuc2 1m111m+1=1mm+1
52 45 50 51 sylancr m01m+1=1mm+1
53 52 adantr m01mG-1m1m+1=1mm+1
54 peano2 G-1mωsucG-1mω
55 36 54 syl m0sucG-1mω
56 55 18 jctil m0G:ω1-1 onto0sucG-1mω
57 17 1 om2uzsuci G-1mωGsucG-1m=GG-1m+1
58 36 57 syl m0GsucG-1m=GG-1m+1
59 35 eleq2i m0m0
60 59 biimpi m0m0
61 f1ocnvfv2 G:ω1-1 onto0m0GG-1m=m
62 18 60 61 sylancr m0GG-1m=m
63 62 oveq1d m0GG-1m+1=m+1
64 58 63 eqtrd m0GsucG-1m=m+1
65 f1ocnvfv G:ω1-1 onto0sucG-1mωGsucG-1m=m+1G-1m+1=sucG-1m
66 56 64 65 sylc m0G-1m+1=sucG-1m
67 66 adantr m01mG-1mG-1m+1=sucG-1m
68 df-suc sucG-1m=G-1mG-1m
69 67 68 eqtrdi m01mG-1mG-1m+1=G-1mG-1m
70 44 53 69 3brtr4d m01mG-1m1m+1G-1m+1
71 70 ex m01mG-1m1m+1G-1m+1
72 4 7 10 13 24 71 nn0ind N01NG-1N