Metamath Proof Explorer


Theorem gaorber

Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses gaorb.1 ˙=xy|xyYgXg˙x=y
gaorber.2 X=BaseG
Assertion gaorber ˙GGrpActY˙ErY

Proof

Step Hyp Ref Expression
1 gaorb.1 ˙=xy|xyYgXg˙x=y
2 gaorber.2 X=BaseG
3 1 relopabiv Rel˙
4 3 a1i ˙GGrpActYRel˙
5 simpr ˙GGrpActYu˙vu˙v
6 1 gaorb u˙vuYvYhXh˙u=v
7 5 6 sylib ˙GGrpActYu˙vuYvYhXh˙u=v
8 7 simp2d ˙GGrpActYu˙vvY
9 7 simp1d ˙GGrpActYu˙vuY
10 7 simp3d ˙GGrpActYu˙vhXh˙u=v
11 simpll ˙GGrpActYu˙vhX˙GGrpActY
12 simpr ˙GGrpActYu˙vhXhX
13 9 adantr ˙GGrpActYu˙vhXuY
14 8 adantr ˙GGrpActYu˙vhXvY
15 eqid invgG=invgG
16 2 15 gacan ˙GGrpActYhXuYvYh˙u=vinvgGh˙v=u
17 11 12 13 14 16 syl13anc ˙GGrpActYu˙vhXh˙u=vinvgGh˙v=u
18 gagrp ˙GGrpActYGGrp
19 18 adantr ˙GGrpActYu˙vGGrp
20 2 15 grpinvcl GGrphXinvgGhX
21 19 20 sylan ˙GGrpActYu˙vhXinvgGhX
22 oveq1 k=invgGhk˙v=invgGh˙v
23 22 eqeq1d k=invgGhk˙v=uinvgGh˙v=u
24 23 rspcev invgGhXinvgGh˙v=ukXk˙v=u
25 24 ex invgGhXinvgGh˙v=ukXk˙v=u
26 21 25 syl ˙GGrpActYu˙vhXinvgGh˙v=ukXk˙v=u
27 17 26 sylbid ˙GGrpActYu˙vhXh˙u=vkXk˙v=u
28 27 rexlimdva ˙GGrpActYu˙vhXh˙u=vkXk˙v=u
29 10 28 mpd ˙GGrpActYu˙vkXk˙v=u
30 1 gaorb v˙uvYuYkXk˙v=u
31 8 9 29 30 syl3anbrc ˙GGrpActYu˙vv˙u
32 9 adantrr ˙GGrpActYu˙vv˙wuY
33 simprr ˙GGrpActYu˙vv˙wv˙w
34 1 gaorb v˙wvYwYkXk˙v=w
35 33 34 sylib ˙GGrpActYu˙vv˙wvYwYkXk˙v=w
36 35 simp2d ˙GGrpActYu˙vv˙wwY
37 10 adantrr ˙GGrpActYu˙vv˙whXh˙u=v
38 35 simp3d ˙GGrpActYu˙vv˙wkXk˙v=w
39 reeanv hXkXh˙u=vk˙v=whXh˙u=vkXk˙v=w
40 18 ad2antrr ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wGGrp
41 simprlr ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wkX
42 simprll ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=whX
43 eqid +G=+G
44 2 43 grpcl GGrpkXhXk+GhX
45 40 41 42 44 syl3anc ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wk+GhX
46 simpll ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=w˙GGrpActY
47 32 adantr ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wuY
48 2 43 gaass ˙GGrpActYkXhXuYk+Gh˙u=k˙h˙u
49 46 41 42 47 48 syl13anc ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wk+Gh˙u=k˙h˙u
50 simprrl ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wh˙u=v
51 50 oveq2d ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wk˙h˙u=k˙v
52 simprrr ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wk˙v=w
53 49 51 52 3eqtrd ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wk+Gh˙u=w
54 oveq1 f=k+Ghf˙u=k+Gh˙u
55 54 eqeq1d f=k+Ghf˙u=wk+Gh˙u=w
56 55 rspcev k+GhXk+Gh˙u=wfXf˙u=w
57 45 53 56 syl2anc ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wfXf˙u=w
58 57 expr ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wfXf˙u=w
59 58 rexlimdvva ˙GGrpActYu˙vv˙whXkXh˙u=vk˙v=wfXf˙u=w
60 39 59 biimtrrid ˙GGrpActYu˙vv˙whXh˙u=vkXk˙v=wfXf˙u=w
61 37 38 60 mp2and ˙GGrpActYu˙vv˙wfXf˙u=w
62 1 gaorb u˙wuYwYfXf˙u=w
63 32 36 61 62 syl3anbrc ˙GGrpActYu˙vv˙wu˙w
64 18 adantr ˙GGrpActYuYGGrp
65 eqid 0G=0G
66 2 65 grpidcl GGrp0GX
67 64 66 syl ˙GGrpActYuY0GX
68 65 gagrpid ˙GGrpActYuY0G˙u=u
69 oveq1 h=0Gh˙u=0G˙u
70 69 eqeq1d h=0Gh˙u=u0G˙u=u
71 70 rspcev 0GX0G˙u=uhXh˙u=u
72 67 68 71 syl2anc ˙GGrpActYuYhXh˙u=u
73 72 ex ˙GGrpActYuYhXh˙u=u
74 73 pm4.71rd ˙GGrpActYuYhXh˙u=uuY
75 df-3an uYuYhXh˙u=uuYuYhXh˙u=u
76 anidm uYuYuY
77 76 anbi2ci uYuYhXh˙u=uhXh˙u=uuY
78 75 77 bitri uYuYhXh˙u=uhXh˙u=uuY
79 74 78 bitr4di ˙GGrpActYuYuYuYhXh˙u=u
80 1 gaorb u˙uuYuYhXh˙u=u
81 79 80 bitr4di ˙GGrpActYuYu˙u
82 4 31 63 81 iserd ˙GGrpActY˙ErY