| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmsymgrfix.s |
|
| 2 |
|
gsmsymgrfix.b |
|
| 3 |
|
gsmsymgreq.z |
|
| 4 |
|
gsmsymgreq.p |
|
| 5 |
|
gsmsymgreq.i |
|
| 6 |
|
ccatws1len |
|
| 7 |
6
|
oveq2d |
|
| 8 |
|
lencl |
|
| 9 |
|
elnn0uz |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
fzosplitsn |
|
| 12 |
10 11
|
syl |
|
| 13 |
7 12
|
eqtrd |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15
|
raleqdv |
|
| 17 |
8
|
adantr |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
fveq1d |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
fveq1d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
23
|
ralbidv |
|
| 25 |
24
|
ralunsn |
|
| 26 |
18 25
|
syl |
|
| 27 |
|
simp1l |
|
| 28 |
|
ccats1val1 |
|
| 29 |
27 28
|
sylan |
|
| 30 |
29
|
fveq1d |
|
| 31 |
|
simp2l |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
eleq2d |
|
| 34 |
33
|
biimpd |
|
| 35 |
34
|
3ad2ant3 |
|
| 36 |
35
|
imp |
|
| 37 |
|
ccats1val1 |
|
| 38 |
31 36 37
|
syl2an2r |
|
| 39 |
38
|
fveq1d |
|
| 40 |
30 39
|
eqeq12d |
|
| 41 |
40
|
ralbidv |
|
| 42 |
41
|
ralbidva |
|
| 43 |
|
eqidd |
|
| 44 |
|
ccats1val2 |
|
| 45 |
44
|
fveq1d |
|
| 46 |
43 45
|
mpd3an3 |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
|
ccats1val2 |
|
| 49 |
48
|
fveq1d |
|
| 50 |
49
|
3expa |
|
| 51 |
50
|
3adant1 |
|
| 52 |
47 51
|
eqeq12d |
|
| 53 |
52
|
ralbidv |
|
| 54 |
42 53
|
anbi12d |
|
| 55 |
16 26 54
|
3bitrd |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
|
pm3.35 |
|
| 58 |
|
fveq2 |
|
| 59 |
|
fveq2 |
|
| 60 |
58 59
|
eqeq12d |
|
| 61 |
60
|
cbvralvw |
|
| 62 |
|
simp-4l |
|
| 63 |
|
simp-4r |
|
| 64 |
|
simpr |
|
| 65 |
62 63 64
|
3jca |
|
| 66 |
65
|
adantr |
|
| 67 |
|
simp-4r |
|
| 68 |
|
simplr |
|
| 69 |
68
|
anim1i |
|
| 70 |
1 2 3 4 5
|
gsmsymgreqlem1 |
|
| 71 |
70
|
imp |
|
| 72 |
66 67 69 71
|
syl21anc |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
ralimdva |
|
| 75 |
74
|
expcom |
|
| 76 |
61 75
|
sylbi |
|
| 77 |
76
|
com23 |
|
| 78 |
57 77
|
syl |
|
| 79 |
78
|
impancom |
|
| 80 |
79
|
com13 |
|
| 81 |
80
|
imp |
|
| 82 |
56 81
|
sylbid |
|
| 83 |
82
|
ex |
|