Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Permutations fixing one element
gsmsymgreqlem2
Next ⟩
gsmsymgreq
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsmsymgreqlem2
Description:
Lemma 2 for
gsmsymgreq
.
(Contributed by
AV
, 26-Jan-2019)
Ref
Expression
Hypotheses
gsmsymgrfix.s
⊢
S
=
SymGrp
N
gsmsymgrfix.b
⊢
B
=
Base
S
gsmsymgreq.z
⊢
Z
=
SymGrp
M
gsmsymgreq.p
⊢
P
=
Base
Z
gsmsymgreq.i
⊢
I
=
N
∩
M
Assertion
gsmsymgreqlem2
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
Proof
Step
Hyp
Ref
Expression
1
gsmsymgrfix.s
⊢
S
=
SymGrp
N
2
gsmsymgrfix.b
⊢
B
=
Base
S
3
gsmsymgreq.z
⊢
Z
=
SymGrp
M
4
gsmsymgreq.p
⊢
P
=
Base
Z
5
gsmsymgreq.i
⊢
I
=
N
∩
M
6
ccatws1len
⊢
X
∈
Word
B
→
X
++
⟨“
C
”⟩
=
X
+
1
7
6
oveq2d
⊢
X
∈
Word
B
→
0
..^
X
++
⟨“
C
”⟩
=
0
..^
X
+
1
8
lencl
⊢
X
∈
Word
B
→
X
∈
ℕ
0
9
elnn0uz
⊢
X
∈
ℕ
0
↔
X
∈
ℤ
≥
0
10
8
9
sylib
⊢
X
∈
Word
B
→
X
∈
ℤ
≥
0
11
fzosplitsn
⊢
X
∈
ℤ
≥
0
→
0
..^
X
+
1
=
0
..^
X
∪
X
12
10
11
syl
⊢
X
∈
Word
B
→
0
..^
X
+
1
=
0
..^
X
∪
X
13
7
12
eqtrd
⊢
X
∈
Word
B
→
0
..^
X
++
⟨“
C
”⟩
=
0
..^
X
∪
X
14
13
adantr
⊢
X
∈
Word
B
∧
C
∈
B
→
0
..^
X
++
⟨“
C
”⟩
=
0
..^
X
∪
X
15
14
3ad2ant1
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
0
..^
X
++
⟨“
C
”⟩
=
0
..^
X
∪
X
16
15
raleqdv
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∪
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
17
8
adantr
⊢
X
∈
Word
B
∧
C
∈
B
→
X
∈
ℕ
0
18
17
3ad2ant1
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
X
∈
ℕ
0
19
fveq2
⊢
i
=
X
→
X
++
⟨“
C
”⟩
i
=
X
++
⟨“
C
”⟩
X
20
19
fveq1d
⊢
i
=
X
→
X
++
⟨“
C
”⟩
i
n
=
X
++
⟨“
C
”⟩
X
n
21
fveq2
⊢
i
=
X
→
Y
++
⟨“
R
”⟩
i
=
Y
++
⟨“
R
”⟩
X
22
21
fveq1d
⊢
i
=
X
→
Y
++
⟨“
R
”⟩
i
n
=
Y
++
⟨“
R
”⟩
X
n
23
20
22
eqeq12d
⊢
i
=
X
→
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
24
23
ralbidv
⊢
i
=
X
→
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
n
∈
I
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
25
24
ralunsn
⊢
X
∈
ℕ
0
→
∀
i
∈
0
..^
X
∪
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
∧
∀
n
∈
I
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
26
18
25
syl
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∪
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
∧
∀
n
∈
I
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
27
simp1l
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
X
∈
Word
B
28
ccats1val1
⊢
X
∈
Word
B
∧
i
∈
0
..^
X
→
X
++
⟨“
C
”⟩
i
=
X
i
29
27
28
sylan
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
X
++
⟨“
C
”⟩
i
=
X
i
30
29
fveq1d
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
X
++
⟨“
C
”⟩
i
n
=
X
i
n
31
simp2l
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
Y
∈
Word
P
32
oveq2
⊢
X
=
Y
→
0
..^
X
=
0
..^
Y
33
32
eleq2d
⊢
X
=
Y
→
i
∈
0
..^
X
↔
i
∈
0
..^
Y
34
33
biimpd
⊢
X
=
Y
→
i
∈
0
..^
X
→
i
∈
0
..^
Y
35
34
3ad2ant3
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
i
∈
0
..^
X
→
i
∈
0
..^
Y
36
35
imp
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
i
∈
0
..^
Y
37
ccats1val1
⊢
Y
∈
Word
P
∧
i
∈
0
..^
Y
→
Y
++
⟨“
R
”⟩
i
=
Y
i
38
31
36
37
syl2an2r
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
Y
++
⟨“
R
”⟩
i
=
Y
i
39
38
fveq1d
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
Y
++
⟨“
R
”⟩
i
n
=
Y
i
n
40
30
39
eqeq12d
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
X
i
n
=
Y
i
n
41
40
ralbidv
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
i
∈
0
..^
X
→
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
n
∈
I
X
i
n
=
Y
i
n
42
41
ralbidva
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
43
eqidd
⊢
X
∈
Word
B
∧
C
∈
B
→
X
=
X
44
ccats1val2
⊢
X
∈
Word
B
∧
C
∈
B
∧
X
=
X
→
X
++
⟨“
C
”⟩
X
=
C
45
44
fveq1d
⊢
X
∈
Word
B
∧
C
∈
B
∧
X
=
X
→
X
++
⟨“
C
”⟩
X
n
=
C
n
46
43
45
mpd3an3
⊢
X
∈
Word
B
∧
C
∈
B
→
X
++
⟨“
C
”⟩
X
n
=
C
n
47
46
3ad2ant1
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
X
++
⟨“
C
”⟩
X
n
=
C
n
48
ccats1val2
⊢
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
Y
++
⟨“
R
”⟩
X
=
R
49
48
fveq1d
⊢
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
Y
++
⟨“
R
”⟩
X
n
=
R
n
50
49
3expa
⊢
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
Y
++
⟨“
R
”⟩
X
n
=
R
n
51
50
3adant1
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
Y
++
⟨“
R
”⟩
X
n
=
R
n
52
47
51
eqeq12d
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
↔
C
n
=
R
n
53
52
ralbidv
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
↔
∀
n
∈
I
C
n
=
R
n
54
42
53
anbi12d
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
∧
∀
n
∈
I
X
++
⟨“
C
”⟩
X
n
=
Y
++
⟨“
R
”⟩
X
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
55
16
26
54
3bitrd
⊢
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
56
55
ad2antlr
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
↔
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
57
pm3.35
⊢
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
58
fveq2
⊢
n
=
j
→
∑
S
X
n
=
∑
S
X
j
59
fveq2
⊢
n
=
j
→
∑
Z
Y
n
=
∑
Z
Y
j
60
58
59
eqeq12d
⊢
n
=
j
→
∑
S
X
n
=
∑
Z
Y
n
↔
∑
S
X
j
=
∑
Z
Y
j
61
60
cbvralvw
⊢
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
↔
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
62
simp-4l
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
N
∈
Fin
63
simp-4r
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
M
∈
Fin
64
simpr
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
n
∈
I
65
62
63
64
3jca
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
N
∈
Fin
∧
M
∈
Fin
∧
n
∈
I
66
65
adantr
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
∧
C
n
=
R
n
→
N
∈
Fin
∧
M
∈
Fin
∧
n
∈
I
67
simp-4r
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
∧
C
n
=
R
n
→
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
68
simplr
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
69
68
anim1i
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
∧
C
n
=
R
n
→
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
C
n
=
R
n
70
1
2
3
4
5
gsmsymgreqlem1
⊢
N
∈
Fin
∧
M
∈
Fin
∧
n
∈
I
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
C
n
=
R
n
→
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
71
70
imp
⊢
N
∈
Fin
∧
M
∈
Fin
∧
n
∈
I
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
C
n
=
R
n
→
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
72
66
67
69
71
syl21anc
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
∧
C
n
=
R
n
→
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
73
72
ex
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
∧
n
∈
I
→
C
n
=
R
n
→
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
74
73
ralimdva
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
→
∀
n
∈
I
C
n
=
R
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
75
74
expcom
⊢
∀
j
∈
I
∑
S
X
j
=
∑
Z
Y
j
→
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
C
n
=
R
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
76
61
75
sylbi
⊢
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
C
n
=
R
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
77
76
com23
⊢
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
n
∈
I
C
n
=
R
n
→
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
78
57
77
syl
⊢
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
n
∈
I
C
n
=
R
n
→
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
79
78
impancom
⊢
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
80
79
com13
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
81
80
imp
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
∧
∀
n
∈
I
C
n
=
R
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
82
56
81
sylbid
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
∧
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n
83
82
ex
⊢
N
∈
Fin
∧
M
∈
Fin
∧
X
∈
Word
B
∧
C
∈
B
∧
Y
∈
Word
P
∧
R
∈
P
∧
X
=
Y
→
∀
i
∈
0
..^
X
∀
n
∈
I
X
i
n
=
Y
i
n
→
∀
n
∈
I
∑
S
X
n
=
∑
Z
Y
n
→
∀
i
∈
0
..^
X
++
⟨“
C
”⟩
∀
n
∈
I
X
++
⟨“
C
”⟩
i
n
=
Y
++
⟨“
R
”⟩
i
n
→
∀
n
∈
I
∑
S
X
++
⟨“
C
”⟩
n
=
∑
Z
Y
++
⟨“
R
”⟩
n