Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumval2.b | |
|
gsumval2.p | |
||
gsumval2.g | |
||
gsumval2.n | |
||
gsumval2.f | |
||
Assertion | gsumval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval2.b | |
|
2 | gsumval2.p | |
|
3 | gsumval2.g | |
|
4 | gsumval2.n | |
|
5 | gsumval2.f | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 3 | adantr | |
9 | ovexd | |
|
10 | 5 | ffnd | |
11 | 10 | adantr | |
12 | simpr | |
|
13 | df-f | |
|
14 | 11 12 13 | sylanbrc | |
15 | 1 6 2 7 8 9 14 | gsumval1 | |
16 | simpl | |
|
17 | 16 | ralimi | |
18 | 17 | a1i | |
19 | 18 | ss2rabi | |
20 | fvex | |
|
21 | 20 | snid | |
22 | 5 | fdmd | |
23 | eluzfz1 | |
|
24 | ne0i | |
|
25 | 4 23 24 | 3syl | |
26 | 22 25 | eqnetrd | |
27 | dm0rn0 | |
|
28 | 27 | necon3bii | |
29 | 26 28 | sylib | |
30 | 29 | adantr | |
31 | ssn0 | |
|
32 | 12 30 31 | syl2anc | |
33 | 32 | neneqd | |
34 | 1 6 2 7 | mgmidsssn0 | |
35 | 3 34 | syl | |
36 | sssn | |
|
37 | 35 36 | sylib | |
38 | 37 | orcanai | |
39 | 33 38 | syldan | |
40 | 21 39 | eleqtrrid | |
41 | 19 40 | sselid | |
42 | oveq1 | |
|
43 | 42 | eqeq1d | |
44 | 43 | ralbidv | |
45 | 44 | elrab | |
46 | oveq2 | |
|
47 | id | |
|
48 | 46 47 | eqeq12d | |
49 | 48 | rspcva | |
50 | 45 49 | sylbi | |
51 | 41 50 | syl | |
52 | 4 | adantr | |
53 | 35 | ad2antrr | |
54 | 14 | ffvelcdmda | |
55 | 53 54 | sseldd | |
56 | elsni | |
|
57 | 55 56 | syl | |
58 | 51 52 57 | seqid3 | |
59 | 15 58 | eqtr4d | |
60 | 3 | adantr | |
61 | 4 | adantr | |
62 | 5 | adantr | |
63 | simpr | |
|
64 | 1 2 60 61 62 7 63 | gsumval2a | |
65 | 59 64 | pm2.61dan | |