Metamath Proof Explorer


Theorem gsumval2

Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval2.b B=BaseG
gsumval2.p +˙=+G
gsumval2.g φGV
gsumval2.n φNM
gsumval2.f φF:MNB
Assertion gsumval2 φGF=seqM+˙FN

Proof

Step Hyp Ref Expression
1 gsumval2.b B=BaseG
2 gsumval2.p +˙=+G
3 gsumval2.g φGV
4 gsumval2.n φNM
5 gsumval2.f φF:MNB
6 eqid 0G=0G
7 eqid xB|yBx+˙y=yy+˙x=y=xB|yBx+˙y=yy+˙x=y
8 3 adantr φranFxB|yBx+˙y=yy+˙x=yGV
9 ovexd φranFxB|yBx+˙y=yy+˙x=yMNV
10 5 ffnd φFFnMN
11 10 adantr φranFxB|yBx+˙y=yy+˙x=yFFnMN
12 simpr φranFxB|yBx+˙y=yy+˙x=yranFxB|yBx+˙y=yy+˙x=y
13 df-f F:MNxB|yBx+˙y=yy+˙x=yFFnMNranFxB|yBx+˙y=yy+˙x=y
14 11 12 13 sylanbrc φranFxB|yBx+˙y=yy+˙x=yF:MNxB|yBx+˙y=yy+˙x=y
15 1 6 2 7 8 9 14 gsumval1 φranFxB|yBx+˙y=yy+˙x=yGF=0G
16 simpl x+˙y=yy+˙x=yx+˙y=y
17 16 ralimi yBx+˙y=yy+˙x=yyBx+˙y=y
18 17 a1i xByBx+˙y=yy+˙x=yyBx+˙y=y
19 18 ss2rabi xB|yBx+˙y=yy+˙x=yxB|yBx+˙y=y
20 fvex 0GV
21 20 snid 0G0G
22 5 fdmd φdomF=MN
23 eluzfz1 NMMMN
24 ne0i MMNMN
25 4 23 24 3syl φMN
26 22 25 eqnetrd φdomF
27 dm0rn0 domF=ranF=
28 27 necon3bii domFranF
29 26 28 sylib φranF
30 29 adantr φranFxB|yBx+˙y=yy+˙x=yranF
31 ssn0 ranFxB|yBx+˙y=yy+˙x=yranFxB|yBx+˙y=yy+˙x=y
32 12 30 31 syl2anc φranFxB|yBx+˙y=yy+˙x=yxB|yBx+˙y=yy+˙x=y
33 32 neneqd φranFxB|yBx+˙y=yy+˙x=y¬xB|yBx+˙y=yy+˙x=y=
34 1 6 2 7 mgmidsssn0 GVxB|yBx+˙y=yy+˙x=y0G
35 3 34 syl φxB|yBx+˙y=yy+˙x=y0G
36 sssn xB|yBx+˙y=yy+˙x=y0GxB|yBx+˙y=yy+˙x=y=xB|yBx+˙y=yy+˙x=y=0G
37 35 36 sylib φxB|yBx+˙y=yy+˙x=y=xB|yBx+˙y=yy+˙x=y=0G
38 37 orcanai φ¬xB|yBx+˙y=yy+˙x=y=xB|yBx+˙y=yy+˙x=y=0G
39 33 38 syldan φranFxB|yBx+˙y=yy+˙x=yxB|yBx+˙y=yy+˙x=y=0G
40 21 39 eleqtrrid φranFxB|yBx+˙y=yy+˙x=y0GxB|yBx+˙y=yy+˙x=y
41 19 40 sselid φranFxB|yBx+˙y=yy+˙x=y0GxB|yBx+˙y=y
42 oveq1 x=0Gx+˙y=0G+˙y
43 42 eqeq1d x=0Gx+˙y=y0G+˙y=y
44 43 ralbidv x=0GyBx+˙y=yyB0G+˙y=y
45 44 elrab 0GxB|yBx+˙y=y0GByB0G+˙y=y
46 oveq2 y=0G0G+˙y=0G+˙0G
47 id y=0Gy=0G
48 46 47 eqeq12d y=0G0G+˙y=y0G+˙0G=0G
49 48 rspcva 0GByB0G+˙y=y0G+˙0G=0G
50 45 49 sylbi 0GxB|yBx+˙y=y0G+˙0G=0G
51 41 50 syl φranFxB|yBx+˙y=yy+˙x=y0G+˙0G=0G
52 4 adantr φranFxB|yBx+˙y=yy+˙x=yNM
53 35 ad2antrr φranFxB|yBx+˙y=yy+˙x=yzMNxB|yBx+˙y=yy+˙x=y0G
54 14 ffvelcdmda φranFxB|yBx+˙y=yy+˙x=yzMNFzxB|yBx+˙y=yy+˙x=y
55 53 54 sseldd φranFxB|yBx+˙y=yy+˙x=yzMNFz0G
56 elsni Fz0GFz=0G
57 55 56 syl φranFxB|yBx+˙y=yy+˙x=yzMNFz=0G
58 51 52 57 seqid3 φranFxB|yBx+˙y=yy+˙x=yseqM+˙FN=0G
59 15 58 eqtr4d φranFxB|yBx+˙y=yy+˙x=yGF=seqM+˙FN
60 3 adantr φ¬ranFxB|yBx+˙y=yy+˙x=yGV
61 4 adantr φ¬ranFxB|yBx+˙y=yy+˙x=yNM
62 5 adantr φ¬ranFxB|yBx+˙y=yy+˙x=yF:MNB
63 simpr φ¬ranFxB|yBx+˙y=yy+˙x=y¬ranFxB|yBx+˙y=yy+˙x=y
64 1 2 60 61 62 7 63 gsumval2a φ¬ranFxB|yBx+˙y=yy+˙x=yGF=seqM+˙FN
65 59 64 pm2.61dan φGF=seqM+˙FN