Metamath Proof Explorer


Theorem hausllycmp

Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion hausllycmp JHausJCompJN-Locally Comp

Proof

Step Hyp Ref Expression
1 haustop JHausJTop
2 1 adantr JHausJCompJTop
3 eqid J=J
4 eqid zJ|vJyvclsJvJz=zJ|vJyvclsJvJz
5 simpll JHausJCompxJyxJHaus
6 difssd JHausJCompxJyxJxJ
7 simplr JHausJCompxJyxJComp
8 1 ad2antrr JHausJCompxJyxJTop
9 simprl JHausJCompxJyxxJ
10 3 opncld JTopxJJxClsdJ
11 8 9 10 syl2anc JHausJCompxJyxJxClsdJ
12 cmpcld JCompJxClsdJJ𝑡JxComp
13 7 11 12 syl2anc JHausJCompxJyxJ𝑡JxComp
14 simprr JHausJCompxJyxyx
15 elssuni xJxJ
16 15 ad2antrl JHausJCompxJyxxJ
17 dfss4 xJJJx=x
18 16 17 sylib JHausJCompxJyxJJx=x
19 14 18 eleqtrrd JHausJCompxJyxyJJx
20 3 4 5 6 13 19 hauscmplem JHausJCompxJyxuJyuclsJuJJx
21 18 sseq2d JHausJCompxJyxclsJuJJxclsJux
22 21 anbi2d JHausJCompxJyxyuclsJuJJxyuclsJux
23 22 rexbidv JHausJCompxJyxuJyuclsJuJJxuJyuclsJux
24 20 23 mpbid JHausJCompxJyxuJyuclsJux
25 8 adantr JHausJCompxJyxuJyuclsJuxJTop
26 simprl JHausJCompxJyxuJyuclsJuxuJ
27 simprrl JHausJCompxJyxuJyuclsJuxyu
28 opnneip JTopuJyuuneiJy
29 25 26 27 28 syl3anc JHausJCompxJyxuJyuclsJuxuneiJy
30 elssuni uJuJ
31 30 ad2antrl JHausJCompxJyxuJyuclsJuxuJ
32 3 sscls JTopuJuclsJu
33 25 31 32 syl2anc JHausJCompxJyxuJyuclsJuxuclsJu
34 3 clsss3 JTopuJclsJuJ
35 25 31 34 syl2anc JHausJCompxJyxuJyuclsJuxclsJuJ
36 3 ssnei2 JTopuneiJyuclsJuclsJuJclsJuneiJy
37 25 29 33 35 36 syl22anc JHausJCompxJyxuJyuclsJuxclsJuneiJy
38 simprrr JHausJCompxJyxuJyuclsJuxclsJux
39 vex xV
40 39 elpw2 clsJu𝒫xclsJux
41 38 40 sylibr JHausJCompxJyxuJyuclsJuxclsJu𝒫x
42 37 41 elind JHausJCompxJyxuJyuclsJuxclsJuneiJy𝒫x
43 7 adantr JHausJCompxJyxuJyuclsJuxJComp
44 3 clscld JTopuJclsJuClsdJ
45 25 31 44 syl2anc JHausJCompxJyxuJyuclsJuxclsJuClsdJ
46 cmpcld JCompclsJuClsdJJ𝑡clsJuComp
47 43 45 46 syl2anc JHausJCompxJyxuJyuclsJuxJ𝑡clsJuComp
48 oveq2 v=clsJuJ𝑡v=J𝑡clsJu
49 48 eleq1d v=clsJuJ𝑡vCompJ𝑡clsJuComp
50 49 rspcev clsJuneiJy𝒫xJ𝑡clsJuCompvneiJy𝒫xJ𝑡vComp
51 42 47 50 syl2anc JHausJCompxJyxuJyuclsJuxvneiJy𝒫xJ𝑡vComp
52 24 51 rexlimddv JHausJCompxJyxvneiJy𝒫xJ𝑡vComp
53 52 ralrimivva JHausJCompxJyxvneiJy𝒫xJ𝑡vComp
54 isnlly JN-Locally Comp JTopxJyxvneiJy𝒫xJ𝑡vComp
55 2 53 54 sylanbrc JHausJCompJN-Locally Comp