Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hausllycmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haustop | |
|
2 | 1 | adantr | |
3 | eqid | |
|
4 | eqid | |
|
5 | simpll | |
|
6 | difssd | |
|
7 | simplr | |
|
8 | 1 | ad2antrr | |
9 | simprl | |
|
10 | 3 | opncld | |
11 | 8 9 10 | syl2anc | |
12 | cmpcld | |
|
13 | 7 11 12 | syl2anc | |
14 | simprr | |
|
15 | elssuni | |
|
16 | 15 | ad2antrl | |
17 | dfss4 | |
|
18 | 16 17 | sylib | |
19 | 14 18 | eleqtrrd | |
20 | 3 4 5 6 13 19 | hauscmplem | |
21 | 18 | sseq2d | |
22 | 21 | anbi2d | |
23 | 22 | rexbidv | |
24 | 20 23 | mpbid | |
25 | 8 | adantr | |
26 | simprl | |
|
27 | simprrl | |
|
28 | opnneip | |
|
29 | 25 26 27 28 | syl3anc | |
30 | elssuni | |
|
31 | 30 | ad2antrl | |
32 | 3 | sscls | |
33 | 25 31 32 | syl2anc | |
34 | 3 | clsss3 | |
35 | 25 31 34 | syl2anc | |
36 | 3 | ssnei2 | |
37 | 25 29 33 35 36 | syl22anc | |
38 | simprrr | |
|
39 | vex | |
|
40 | 39 | elpw2 | |
41 | 38 40 | sylibr | |
42 | 37 41 | elind | |
43 | 7 | adantr | |
44 | 3 | clscld | |
45 | 25 31 44 | syl2anc | |
46 | cmpcld | |
|
47 | 43 45 46 | syl2anc | |
48 | oveq2 | |
|
49 | 48 | eleq1d | |
50 | 49 | rspcev | |
51 | 42 47 50 | syl2anc | |
52 | 24 51 | rexlimddv | |
53 | 52 | ralrimivva | |
54 | isnlly | |
|
55 | 2 53 54 | sylanbrc | |