Metamath Proof Explorer


Theorem hdmap1l6b

Description: Lemmma for hdmap1l6 . (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6b.y φ Y = 0 ˙
hdmap1l6b.z φ Z V
hdmap1l6b.ne φ ¬ X N Y Z
Assertion hdmap1l6b φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6b.y φ Y = 0 ˙
21 hdmap1l6b.z φ Z V
22 hdmap1l6b.ne φ ¬ X N Y Z
23 1 8 16 lcdlmod φ C LMod
24 lmodgrp C LMod C Grp
25 23 24 syl φ C Grp
26 1 2 16 dvhlvec φ U LVec
27 18 eldifad φ X V
28 1 2 16 dvhlmod φ U LMod
29 3 6 lmod0vcl U LMod 0 ˙ V
30 28 29 syl φ 0 ˙ V
31 20 30 eqeltrd φ Y V
32 3 7 26 27 31 21 22 lspindpi φ N X N Y N X N Z
33 32 simprd φ N X N Z
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 21 hdmap1cl φ I X F Z D
35 9 10 12 grplid C Grp I X F Z D Q ˙ I X F Z = I X F Z
36 25 34 35 syl2anc φ Q ˙ I X F Z = I X F Z
37 20 oteq3d φ X F Y = X F 0 ˙
38 37 fveq2d φ I X F Y = I X F 0 ˙
39 1 2 3 6 8 9 12 15 16 17 27 hdmap1val0 φ I X F 0 ˙ = Q
40 38 39 eqtrd φ I X F Y = Q
41 40 oveq1d φ I X F Y ˙ I X F Z = Q ˙ I X F Z
42 20 oveq1d φ Y + ˙ Z = 0 ˙ + ˙ Z
43 lmodgrp U LMod U Grp
44 28 43 syl φ U Grp
45 3 4 6 grplid U Grp Z V 0 ˙ + ˙ Z = Z
46 44 21 45 syl2anc φ 0 ˙ + ˙ Z = Z
47 42 46 eqtrd φ Y + ˙ Z = Z
48 47 oteq3d φ X F Y + ˙ Z = X F Z
49 48 fveq2d φ I X F Y + ˙ Z = I X F Z
50 36 41 49 3eqtr4rd φ I X F Y + ˙ Z = I X F Y ˙ I X F Z