Metamath Proof Explorer


Theorem hdmap1l6b

Description: Lemmma for hdmap1l6 . (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6b.y φY=0˙
hdmap1l6b.z φZV
hdmap1l6b.ne φ¬XNYZ
Assertion hdmap1l6b φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6b.y φY=0˙
21 hdmap1l6b.z φZV
22 hdmap1l6b.ne φ¬XNYZ
23 1 8 16 lcdlmod φCLMod
24 lmodgrp CLModCGrp
25 23 24 syl φCGrp
26 1 2 16 dvhlvec φULVec
27 18 eldifad φXV
28 1 2 16 dvhlmod φULMod
29 3 6 lmod0vcl ULMod0˙V
30 28 29 syl φ0˙V
31 20 30 eqeltrd φYV
32 3 7 26 27 31 21 22 lspindpi φNXNYNXNZ
33 32 simprd φNXNZ
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 21 hdmap1cl φIXFZD
35 9 10 12 grplid CGrpIXFZDQ˙IXFZ=IXFZ
36 25 34 35 syl2anc φQ˙IXFZ=IXFZ
37 20 oteq3d φXFY=XF0˙
38 37 fveq2d φIXFY=IXF0˙
39 1 2 3 6 8 9 12 15 16 17 27 hdmap1val0 φIXF0˙=Q
40 38 39 eqtrd φIXFY=Q
41 40 oveq1d φIXFY˙IXFZ=Q˙IXFZ
42 20 oveq1d φY+˙Z=0˙+˙Z
43 lmodgrp ULModUGrp
44 28 43 syl φUGrp
45 3 4 6 grplid UGrpZV0˙+˙Z=Z
46 44 21 45 syl2anc φ0˙+˙Z=Z
47 42 46 eqtrd φY+˙Z=Z
48 47 oteq3d φXFY+˙Z=XFZ
49 48 fveq2d φIXFY+˙Z=IXFZ
50 36 41 49 3eqtr4rd φIXFY+˙Z=IXFY˙IXFZ