Metamath Proof Explorer


Theorem hdmap1l6c

Description: Lemmma for hdmap1l6 . (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6c.y φYV
hdmap1l6c.z φZ=0˙
hdmap1l6c.ne φ¬XNYZ
Assertion hdmap1l6c φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6c.y φYV
21 hdmap1l6c.z φZ=0˙
22 hdmap1l6c.ne φ¬XNYZ
23 1 8 16 lcdlmod φCLMod
24 lmodgrp CLModCGrp
25 23 24 syl φCGrp
26 1 2 16 dvhlvec φULVec
27 18 eldifad φXV
28 1 2 16 dvhlmod φULMod
29 3 6 lmod0vcl ULMod0˙V
30 28 29 syl φ0˙V
31 21 30 eqeltrd φZV
32 3 7 26 27 20 31 22 lspindpi φNXNYNXNZ
33 32 simpld φNXNY
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 20 hdmap1cl φIXFYD
35 9 10 12 grprid CGrpIXFYDIXFY˙Q=IXFY
36 25 34 35 syl2anc φIXFY˙Q=IXFY
37 21 oteq3d φXFZ=XF0˙
38 37 fveq2d φIXFZ=IXF0˙
39 1 2 3 6 8 9 12 15 16 17 27 hdmap1val0 φIXF0˙=Q
40 38 39 eqtrd φIXFZ=Q
41 40 oveq2d φIXFY˙IXFZ=IXFY˙Q
42 21 oveq2d φY+˙Z=Y+˙0˙
43 lmodgrp ULModUGrp
44 28 43 syl φUGrp
45 3 4 6 grprid UGrpYVY+˙0˙=Y
46 44 20 45 syl2anc φY+˙0˙=Y
47 42 46 eqtrd φY+˙Z=Y
48 47 oteq3d φXFY+˙Z=XFY
49 48 fveq2d φIXFY+˙Z=IXFY
50 36 41 49 3eqtr4rd φIXFY+˙Z=IXFY˙IXFZ