Metamath Proof Explorer


Theorem hdmap1l6lem2

Description: Lemma for hdmap1l6 . Part (6) in Baer p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6e.y φ Y V 0 ˙
hdmap1l6e.z φ Z V 0 ˙
hdmap1l6e.xn φ ¬ X N Y Z
hdmap1l6.yz φ N Y N Z
hdmap1l6.fg φ I X F Y = G
hdmap1l6.fe φ I X F Z = E
Assertion hdmap1l6lem2 φ M N Y + ˙ Z = L G ˙ E

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6e.y φ Y V 0 ˙
21 hdmap1l6e.z φ Z V 0 ˙
22 hdmap1l6e.xn φ ¬ X N Y Z
23 hdmap1l6.yz φ N Y N Z
24 hdmap1l6.fg φ I X F Y = G
25 hdmap1l6.fe φ I X F Z = E
26 eqid LSubSp U = LSubSp U
27 1 2 16 dvhlmod φ U LMod
28 20 eldifad φ Y V
29 3 26 7 lspsncl U LMod Y V N Y LSubSp U
30 27 28 29 syl2anc φ N Y LSubSp U
31 21 eldifad φ Z V
32 3 26 7 lspsncl U LMod Z V N Z LSubSp U
33 27 31 32 syl2anc φ N Z LSubSp U
34 eqid LSSum U = LSSum U
35 26 34 lsmcl U LMod N Y LSubSp U N Z LSubSp U N Y LSSum U N Z LSubSp U
36 27 30 33 35 syl3anc φ N Y LSSum U N Z LSubSp U
37 18 eldifad φ X V
38 3 4 lmodvacl U LMod Y V Z V Y + ˙ Z V
39 27 28 31 38 syl3anc φ Y + ˙ Z V
40 3 5 lmodvsubcl U LMod X V Y + ˙ Z V X - ˙ Y + ˙ Z V
41 27 37 39 40 syl3anc φ X - ˙ Y + ˙ Z V
42 3 26 7 lspsncl U LMod X - ˙ Y + ˙ Z V N X - ˙ Y + ˙ Z LSubSp U
43 27 41 42 syl2anc φ N X - ˙ Y + ˙ Z LSubSp U
44 3 26 7 lspsncl U LMod X V N X LSubSp U
45 27 37 44 syl2anc φ N X LSubSp U
46 26 34 lsmcl U LMod N X - ˙ Y + ˙ Z LSubSp U N X LSubSp U N X - ˙ Y + ˙ Z LSSum U N X LSubSp U
47 27 43 45 46 syl3anc φ N X - ˙ Y + ˙ Z LSSum U N X LSubSp U
48 1 14 2 26 16 36 47 mapdin φ M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X = M N Y LSSum U N Z M N X - ˙ Y + ˙ Z LSSum U N X
49 eqid LSSum C = LSSum C
50 1 14 2 26 34 8 49 16 30 33 mapdlsm φ M N Y LSSum U N Z = M N Y LSSum C M N Z
51 1 2 16 dvhlvec φ U LVec
52 3 6 7 51 28 21 37 23 22 lspindp2 φ N X N Y ¬ Z N X Y
53 52 simpld φ N X N Y
54 1 2 3 6 7 8 9 13 14 15 16 17 19 53 18 28 hdmap1cl φ I X F Y D
55 24 54 eqeltrrd φ G D
56 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 20 55 53 19 hdmap1eq φ I X F Y = G M N Y = L G M N X - ˙ Y = L F R G
57 24 56 mpbid φ M N Y = L G M N X - ˙ Y = L F R G
58 57 simpld φ M N Y = L G
59 3 6 7 51 20 31 37 23 22 lspindp1 φ N X N Z ¬ Y N X Z
60 59 simpld φ N X N Z
61 1 2 3 6 7 8 9 13 14 15 16 17 19 60 18 31 hdmap1cl φ I X F Z D
62 25 61 eqeltrrd φ E D
63 1 2 3 5 6 7 8 9 11 13 14 15 16 18 17 21 62 60 19 hdmap1eq φ I X F Z = E M N Z = L E M N X - ˙ Z = L F R E
64 25 63 mpbid φ M N Z = L E M N X - ˙ Z = L F R E
65 64 simpld φ M N Z = L E
66 58 65 oveq12d φ M N Y LSSum C M N Z = L G LSSum C L E
67 50 66 eqtrd φ M N Y LSSum U N Z = L G LSSum C L E
68 1 14 2 26 34 8 49 16 43 45 mapdlsm φ M N X - ˙ Y + ˙ Z LSSum U N X = M N X - ˙ Y + ˙ Z LSSum C M N X
69 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6lem1 φ M N X - ˙ Y + ˙ Z = L F R G ˙ E
70 69 19 oveq12d φ M N X - ˙ Y + ˙ Z LSSum C M N X = L F R G ˙ E LSSum C L F
71 68 70 eqtrd φ M N X - ˙ Y + ˙ Z LSSum U N X = L F R G ˙ E LSSum C L F
72 67 71 ineq12d φ M N Y LSSum U N Z M N X - ˙ Y + ˙ Z LSSum U N X = L G LSSum C L E L F R G ˙ E LSSum C L F
73 48 72 eqtrd φ M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X = L G LSSum C L E L F R G ˙ E LSSum C L F
74 3 5 6 34 7 51 37 22 23 20 21 4 baerlem5b φ N Y + ˙ Z = N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X
75 74 fveq2d φ M N Y + ˙ Z = M N Y LSSum U N Z N X - ˙ Y + ˙ Z LSSum U N X
76 1 8 16 lcdlvec φ C LVec
77 1 14 2 3 7 8 9 13 16 17 19 37 28 55 58 31 62 65 22 mapdindp φ ¬ F L G E
78 1 14 2 3 7 8 9 13 16 55 58 28 31 62 65 23 mapdncol φ L G L E
79 1 14 2 3 7 8 9 13 16 55 58 6 12 20 mapdn0 φ G D Q
80 1 14 2 3 7 8 9 13 16 62 65 6 12 21 mapdn0 φ E D Q
81 9 11 12 49 13 76 17 77 78 79 80 10 baerlem5b φ L G ˙ E = L G LSSum C L E L F R G ˙ E LSSum C L F
82 73 75 81 3eqtr4d φ M N Y + ˙ Z = L G ˙ E