Metamath Proof Explorer


Theorem hdmaprnlem17N

Description: Lemma for hdmaprnN . Include zero. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h H=LHypK
hdmaprnlem15.u U=DVecHKW
hdmaprnlem15.v V=BaseU
hdmaprnlem15.n N=LSpanU
hdmaprnlem15.c C=LCDualKW
hdmaprnlem15.d D=BaseC
hdmaprnlem15.q 0˙=0C
hdmaprnlem15.l L=LSpanC
hdmaprnlem15.m M=mapdKW
hdmaprnlem15.s S=HDMapKW
hdmaprnlem15.k φKHLWH
hdmaprnlem17.se φsD
Assertion hdmaprnlem17N φsranS

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h H=LHypK
2 hdmaprnlem15.u U=DVecHKW
3 hdmaprnlem15.v V=BaseU
4 hdmaprnlem15.n N=LSpanU
5 hdmaprnlem15.c C=LCDualKW
6 hdmaprnlem15.d D=BaseC
7 hdmaprnlem15.q 0˙=0C
8 hdmaprnlem15.l L=LSpanC
9 hdmaprnlem15.m M=mapdKW
10 hdmaprnlem15.s S=HDMapKW
11 hdmaprnlem15.k φKHLWH
12 hdmaprnlem17.se φsD
13 eleq1 s=0˙sranS0˙ranS
14 11 adantr φs0˙KHLWH
15 12 anim1i φs0˙sDs0˙
16 eldifsn sD0˙sDs0˙
17 15 16 sylibr φs0˙sD0˙
18 1 2 3 4 5 6 7 8 9 10 14 17 hdmaprnlem16N φs0˙sranS
19 eqid 0U=0U
20 1 2 19 5 7 10 11 hdmapval0 φS0U=0˙
21 1 2 3 10 11 hdmapfnN φSFnV
22 1 2 11 dvhlmod φULMod
23 3 19 lmod0vcl ULMod0UV
24 22 23 syl φ0UV
25 fnfvelrn SFnV0UVS0UranS
26 21 24 25 syl2anc φS0UranS
27 20 26 eqeltrrd φ0˙ranS
28 13 18 27 pm2.61ne φsranS