Metamath Proof Explorer


Theorem hoiprodcl

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoiprodcl.1 kφ
hoiprodcl.2 φXFin
hoiprodcl.3 φI:X2
Assertion hoiprodcl φkXvol.Ik0+∞

Proof

Step Hyp Ref Expression
1 hoiprodcl.1 kφ
2 hoiprodcl.2 φXFin
3 hoiprodcl.3 φI:X2
4 0xr 0*
5 4 a1i φ0*
6 pnfxr +∞*
7 6 a1i φ+∞*
8 3 adantr φkXI:X2
9 simpr φkXkX
10 8 9 fvovco φkX.Ik=1stIk2ndIk
11 10 fveq2d φkXvol.Ik=vol1stIk2ndIk
12 3 ffvelcdmda φkXIk2
13 xp1st Ik21stIk
14 12 13 syl φkX1stIk
15 xp2nd Ik22ndIk
16 12 15 syl φkX2ndIk
17 volico 1stIk2ndIkvol1stIk2ndIk=if1stIk<2ndIk2ndIk1stIk0
18 14 16 17 syl2anc φkXvol1stIk2ndIk=if1stIk<2ndIk2ndIk1stIk0
19 11 18 eqtrd φkXvol.Ik=if1stIk<2ndIk2ndIk1stIk0
20 16 14 resubcld φkX2ndIk1stIk
21 0red φkX0
22 20 21 ifcld φkXif1stIk<2ndIk2ndIk1stIk0
23 19 22 eqeltrd φkXvol.Ik
24 1 2 23 fprodreclf φkXvol.Ik
25 24 rexrd φkXvol.Ik*
26 16 rexrd φkX2ndIk*
27 icombl 1stIk2ndIk*1stIk2ndIkdomvol
28 14 26 27 syl2anc φkX1stIk2ndIkdomvol
29 10 28 eqeltrd φkX.Ikdomvol
30 volge0 .Ikdomvol0vol.Ik
31 29 30 syl φkX0vol.Ik
32 1 2 23 31 fprodge0 φ0kXvol.Ik
33 24 ltpnfd φkXvol.Ik<+∞
34 5 7 25 32 33 elicod φkXvol.Ik0+∞