Metamath Proof Explorer


Theorem hoiqssbl

Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoiqssbl.x φXFin
hoiqssbl.y φYX
hoiqssbl.e φE+
Assertion hoiqssbl φcXdXYiXcidiiXcidiYballdistmsupE

Proof

Step Hyp Ref Expression
1 hoiqssbl.x φXFin
2 hoiqssbl.y φYX
3 hoiqssbl.e φE+
4 0ex V
5 4 snid
6 5 a1i φX=
7 2 adantr φX=YX
8 oveq2 X=X=
9 reex V
10 mapdm0 V=
11 9 10 ax-mp =
12 11 a1i X==
13 8 12 eqtrd X=X=
14 13 adantl φX=X=
15 7 14 eleqtrd φX=Y
16 0fin Fin
17 eqid distmsup=distmsup
18 17 rrxmetfi FindistmsupMet
19 16 18 ax-mp distmsupMet
20 metxmet distmsupMetdistmsup∞Met
21 19 20 ax-mp distmsup∞Met
22 21 a1i φX=distmsup∞Met
23 6 11 eleqtrrdi φX=
24 3 adantr φX=E+
25 blcntr distmsup∞MetE+balldistmsupE
26 22 23 24 25 syl3anc φX=balldistmsupE
27 elsni YY=
28 15 27 syl φX=Y=
29 28 eqcomd φX==Y
30 29 oveq1d φX=balldistmsupE=YballdistmsupE
31 26 30 eleqtrd φX=YballdistmsupE
32 31 snssd φX=YballdistmsupE
33 15 32 jca φX=YYballdistmsupE
34 biidd d=YYballdistmsupEYYballdistmsupE
35 34 rspcev YYballdistmsupEdYYballdistmsupE
36 6 33 35 syl2anc φX=dYYballdistmsupE
37 biidd c=dYYballdistmsupEdYYballdistmsupE
38 37 rspcev dYYballdistmsupEcdYYballdistmsupE
39 6 36 38 syl2anc φX=cdYYballdistmsupE
40 oveq2 X=X=
41 qex V
42 mapdm0 V=
43 41 42 ax-mp =
44 43 a1i X==
45 40 44 eqtr2d X==X
46 45 eqcomd X=X=
47 46 eleq2d X=cXc
48 46 eleq2d X=dXd
49 48 anbi1d X=dXYYballdistmsupEdYYballdistmsupE
50 49 rexbidv2 X=dXYYballdistmsupEdYYballdistmsupE
51 47 50 anbi12d X=cXdXYYballdistmsupEcdYYballdistmsupE
52 51 rexbidv2 X=cXdXYYballdistmsupEcdYYballdistmsupE
53 52 adantl φX=cXdXYYballdistmsupEcdYYballdistmsupE
54 39 53 mpbird φX=cXdXYYballdistmsupE
55 ixpeq1 X=iXcidi=icidi
56 ixp0x icidi=
57 56 a1i X=icidi=
58 55 57 eqtrd X=iXcidi=
59 58 eleq2d X=YiXcidiY
60 2fveq3 X=distmsup=distmsup
61 60 fveq2d X=balldistmsup=balldistmsup
62 61 oveqd X=YballdistmsupE=YballdistmsupE
63 58 62 sseq12d X=iXcidiYballdistmsupEYballdistmsupE
64 59 63 anbi12d X=YiXcidiiXcidiYballdistmsupEYYballdistmsupE
65 64 rexbidv X=dXYiXcidiiXcidiYballdistmsupEdXYYballdistmsupE
66 65 rexbidv X=cXdXYiXcidiiXcidiYballdistmsupEcXdXYYballdistmsupE
67 66 adantl φX=cXdXYiXcidiiXcidiYballdistmsupEcXdXYYballdistmsupE
68 54 67 mpbird φX=cXdXYiXcidiiXcidiYballdistmsupE
69 1 adantr φ¬X=XFin
70 neqne ¬X=X
71 70 adantl φ¬X=X
72 2 adantr φ¬X=YX
73 3 adantr φ¬X=E+
74 69 71 72 73 hoiqssbllem3 φ¬X=cXdXYiXcidiiXcidiYballdistmsupE
75 68 74 pm2.61dan φcXdXYiXcidiiXcidiYballdistmsupE