Metamath Proof Explorer


Theorem hsmexlem1

Description: Lemma for hsmex . Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis hsmexlem.o O=OrdIsoEA
Assertion hsmexlem1 AOnA*BdomOhar𝒫B

Proof

Step Hyp Ref Expression
1 hsmexlem.o O=OrdIsoEA
2 1 oicl OrddomO
3 relwdom Rel*
4 3 brrelex1i A*BAV
5 4 adantl AOnA*BAV
6 uniexg AVAV
7 sucexg AVsucAV
8 5 6 7 3syl AOnA*BsucAV
9 1 oif O:domOA
10 onsucuni AOnAsucA
11 10 adantr AOnA*BAsucA
12 fss O:domOAAsucAO:domOsucA
13 9 11 12 sylancr AOnA*BO:domOsucA
14 1 oismo AOnSmoOranO=A
15 14 adantr AOnA*BSmoOranO=A
16 15 simpld AOnA*BSmoO
17 ssorduni AOnOrdA
18 17 adantr AOnA*BOrdA
19 ordsuc OrdAOrdsucA
20 18 19 sylib AOnA*BOrdsucA
21 smocdmdom O:domOsucASmoOOrdsucAdomOsucA
22 13 16 20 21 syl3anc AOnA*BdomOsucA
23 8 22 ssexd AOnA*BdomOV
24 elong domOVdomOOnOrddomO
25 23 24 syl AOnA*BdomOOnOrddomO
26 2 25 mpbiri AOnA*BdomOOn
27 canth2g domOVdomO𝒫domO
28 sdomdom domO𝒫domOdomO𝒫domO
29 23 27 28 3syl AOnA*BdomO𝒫domO
30 simpl AOnA*BAOn
31 epweon EWeOn
32 wess AOnEWeOnEWeA
33 30 31 32 mpisyl AOnA*BEWeA
34 epse ESeA
35 1 oiiso2 EWeAESeAOIsomE,EdomOranO
36 33 34 35 sylancl AOnA*BOIsomE,EdomOranO
37 isof1o OIsomE,EdomOranOO:domO1-1 ontoranO
38 36 37 syl AOnA*BO:domO1-1 ontoranO
39 15 simprd AOnA*BranO=A
40 39 f1oeq3d AOnA*BO:domO1-1 ontoranOO:domO1-1 ontoA
41 38 40 mpbid AOnA*BO:domO1-1 ontoA
42 f1oen2g domOOnAVO:domO1-1 ontoAdomOA
43 26 5 41 42 syl3anc AOnA*BdomOA
44 endom domOAdomOA
45 domwdom domOAdomO*A
46 43 44 45 3syl AOnA*BdomO*A
47 wdomtr domO*AA*BdomO*B
48 46 47 sylancom AOnA*BdomO*B
49 wdompwdom domO*B𝒫domO𝒫B
50 48 49 syl AOnA*B𝒫domO𝒫B
51 domtr domO𝒫domO𝒫domO𝒫BdomO𝒫B
52 29 50 51 syl2anc AOnA*BdomO𝒫B
53 elharval domOhar𝒫BdomOOndomO𝒫B
54 26 52 53 sylanbrc AOnA*BdomOhar𝒫B