Description: Lemma for hsmex . Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hsmexlem.o | |
|
Assertion | hsmexlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hsmexlem.o | |
|
2 | 1 | oicl | |
3 | relwdom | |
|
4 | 3 | brrelex1i | |
5 | 4 | adantl | |
6 | uniexg | |
|
7 | sucexg | |
|
8 | 5 6 7 | 3syl | |
9 | 1 | oif | |
10 | onsucuni | |
|
11 | 10 | adantr | |
12 | fss | |
|
13 | 9 11 12 | sylancr | |
14 | 1 | oismo | |
15 | 14 | adantr | |
16 | 15 | simpld | |
17 | ssorduni | |
|
18 | 17 | adantr | |
19 | ordsuc | |
|
20 | 18 19 | sylib | |
21 | smocdmdom | |
|
22 | 13 16 20 21 | syl3anc | |
23 | 8 22 | ssexd | |
24 | elong | |
|
25 | 23 24 | syl | |
26 | 2 25 | mpbiri | |
27 | canth2g | |
|
28 | sdomdom | |
|
29 | 23 27 28 | 3syl | |
30 | simpl | |
|
31 | epweon | |
|
32 | wess | |
|
33 | 30 31 32 | mpisyl | |
34 | epse | |
|
35 | 1 | oiiso2 | |
36 | 33 34 35 | sylancl | |
37 | isof1o | |
|
38 | 36 37 | syl | |
39 | 15 | simprd | |
40 | 39 | f1oeq3d | |
41 | 38 40 | mpbid | |
42 | f1oen2g | |
|
43 | 26 5 41 42 | syl3anc | |
44 | endom | |
|
45 | domwdom | |
|
46 | 43 44 45 | 3syl | |
47 | wdomtr | |
|
48 | 46 47 | sylancom | |
49 | wdompwdom | |
|
50 | 48 49 | syl | |
51 | domtr | |
|
52 | 29 50 51 | syl2anc | |
53 | elharval | |
|
54 | 26 52 53 | sylanbrc | |