Metamath Proof Explorer


Theorem icombl

Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icombl AB*ABdomvol

Proof

Step Hyp Ref Expression
1 uncom B+∞AB=ABB+∞
2 rexr AA*
3 2 ad2antrr AB*A<BA*
4 simplr AB*A<BB*
5 pnfxr +∞*
6 5 a1i AB*A<B+∞*
7 xrltle A*B*A<BAB
8 2 7 sylan AB*A<BAB
9 8 imp AB*A<BAB
10 pnfge B*B+∞
11 4 10 syl AB*A<BB+∞
12 icoun A*B*+∞*ABB+∞ABB+∞=A+∞
13 3 4 6 9 11 12 syl32anc AB*A<BABB+∞=A+∞
14 1 13 eqtrid AB*A<BB+∞AB=A+∞
15 ssun1 B+∞B+∞AB
16 15 14 sseqtrid AB*A<BB+∞A+∞
17 incom B+∞AB=ABB+∞
18 icodisj A*B*+∞*ABB+∞=
19 5 18 mp3an3 A*B*ABB+∞=
20 3 4 19 syl2anc AB*A<BABB+∞=
21 17 20 eqtrid AB*A<BB+∞AB=
22 uneqdifeq B+∞A+∞B+∞AB=B+∞AB=A+∞A+∞B+∞=AB
23 16 21 22 syl2anc AB*A<BB+∞AB=A+∞A+∞B+∞=AB
24 14 23 mpbid AB*A<BA+∞B+∞=AB
25 icombl1 AA+∞domvol
26 25 ad2antrr AB*A<BA+∞domvol
27 xrleloe B*+∞*B+∞B<+∞B=+∞
28 4 6 27 syl2anc AB*A<BB+∞B<+∞B=+∞
29 11 28 mpbid AB*A<BB<+∞B=+∞
30 simpr AB*A<BA<B
31 xrre2 A*B*+∞*A<BB<+∞B
32 31 expr A*B*+∞*A<BB<+∞B
33 3 4 6 30 32 syl31anc AB*A<BB<+∞B
34 33 orim1d AB*A<BB<+∞B=+∞BB=+∞
35 29 34 mpd AB*A<BBB=+∞
36 icombl1 BB+∞domvol
37 oveq1 B=+∞B+∞=+∞+∞
38 pnfge +∞*+∞+∞
39 5 38 ax-mp +∞+∞
40 ico0 +∞*+∞*+∞+∞=+∞+∞
41 5 5 40 mp2an +∞+∞=+∞+∞
42 39 41 mpbir +∞+∞=
43 37 42 eqtrdi B=+∞B+∞=
44 0mbl domvol
45 43 44 eqeltrdi B=+∞B+∞domvol
46 36 45 jaoi BB=+∞B+∞domvol
47 35 46 syl AB*A<BB+∞domvol
48 difmbl A+∞domvolB+∞domvolA+∞B+∞domvol
49 26 47 48 syl2anc AB*A<BA+∞B+∞domvol
50 24 49 eqeltrrd AB*A<BABdomvol
51 ico0 A*B*AB=BA
52 2 51 sylan AB*AB=BA
53 simpr AB*B*
54 2 adantr AB*A*
55 53 54 xrlenltd AB*BA¬A<B
56 52 55 bitrd AB*AB=¬A<B
57 56 biimpar AB*¬A<BAB=
58 57 44 eqeltrdi AB*¬A<BABdomvol
59 50 58 pm2.61dan AB*ABdomvol