| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icopnfhmeo.f |  | 
						
							| 2 |  | 0re |  | 
						
							| 3 |  | 1xr |  | 
						
							| 4 |  | elico2 |  | 
						
							| 5 | 2 3 4 | mp2an |  | 
						
							| 6 | 5 | simp1bi |  | 
						
							| 7 | 5 | simp3bi |  | 
						
							| 8 |  | 1re |  | 
						
							| 9 |  | difrp |  | 
						
							| 10 | 6 8 9 | sylancl |  | 
						
							| 11 | 7 10 | mpbid |  | 
						
							| 12 | 6 11 | rerpdivcld |  | 
						
							| 13 | 5 | simp2bi |  | 
						
							| 14 | 6 11 13 | divge0d |  | 
						
							| 15 |  | elrege0 |  | 
						
							| 16 | 12 14 15 | sylanbrc |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | elrege0 |  | 
						
							| 19 | 18 | simplbi |  | 
						
							| 20 |  | readdcl |  | 
						
							| 21 | 8 19 20 | sylancr |  | 
						
							| 22 | 2 | a1i |  | 
						
							| 23 | 18 | simprbi |  | 
						
							| 24 | 19 | ltp1d |  | 
						
							| 25 |  | ax-1cn |  | 
						
							| 26 | 19 | recnd |  | 
						
							| 27 |  | addcom |  | 
						
							| 28 | 25 26 27 | sylancr |  | 
						
							| 29 | 24 28 | breqtrrd |  | 
						
							| 30 | 22 19 21 23 29 | lelttrd |  | 
						
							| 31 | 21 30 | elrpd |  | 
						
							| 32 | 19 31 | rerpdivcld |  | 
						
							| 33 |  | divge0 |  | 
						
							| 34 | 19 23 21 30 33 | syl22anc |  | 
						
							| 35 | 21 | recnd |  | 
						
							| 36 | 35 | mulridd |  | 
						
							| 37 | 29 36 | breqtrrd |  | 
						
							| 38 | 8 | a1i |  | 
						
							| 39 |  | ltdivmul |  | 
						
							| 40 | 19 38 21 30 39 | syl112anc |  | 
						
							| 41 | 37 40 | mpbird |  | 
						
							| 42 |  | elico2 |  | 
						
							| 43 | 2 3 42 | mp2an |  | 
						
							| 44 | 32 34 41 43 | syl3anbrc |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 26 | adantl |  | 
						
							| 47 | 6 | adantr |  | 
						
							| 48 | 47 | recnd |  | 
						
							| 49 | 48 46 | mulcld |  | 
						
							| 50 | 46 49 48 | subadd2d |  | 
						
							| 51 |  | 1cnd |  | 
						
							| 52 | 51 48 46 | subdird |  | 
						
							| 53 | 46 | mullidd |  | 
						
							| 54 | 53 | oveq1d |  | 
						
							| 55 | 52 54 | eqtrd |  | 
						
							| 56 | 55 | eqeq1d |  | 
						
							| 57 | 48 51 46 | adddid |  | 
						
							| 58 | 48 | mulridd |  | 
						
							| 59 | 58 | oveq1d |  | 
						
							| 60 | 57 59 | eqtrd |  | 
						
							| 61 | 60 | eqeq1d |  | 
						
							| 62 | 50 56 61 | 3bitr4rd |  | 
						
							| 63 |  | eqcom |  | 
						
							| 64 |  | eqcom |  | 
						
							| 65 | 62 63 64 | 3bitr4g |  | 
						
							| 66 | 35 | adantl |  | 
						
							| 67 | 31 | adantl |  | 
						
							| 68 | 67 | rpne0d |  | 
						
							| 69 | 46 48 66 68 | divmul3d |  | 
						
							| 70 | 11 | adantr |  | 
						
							| 71 | 70 | rpcnd |  | 
						
							| 72 | 70 | rpne0d |  | 
						
							| 73 | 48 46 71 72 | divmul2d |  | 
						
							| 74 | 65 69 73 | 3bitr4d |  | 
						
							| 75 |  | eqcom |  | 
						
							| 76 |  | eqcom |  | 
						
							| 77 | 74 75 76 | 3bitr4g |  | 
						
							| 78 | 77 | adantl |  | 
						
							| 79 | 1 17 45 78 | f1ocnv2d |  | 
						
							| 80 | 79 | mptru |  |