Metamath Proof Explorer


Theorem indexdom

Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A , and which is dominated by the set A . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion indexdom AMxAyBφccAcBxAycφycxAφ

Proof

Step Hyp Ref Expression
1 nfsbc1v y[˙fx/y]˙φ
2 sbceq1a y=fxφ[˙fx/y]˙φ
3 1 2 ac6gf AMxAyBφff:ABxA[˙fx/y]˙φ
4 fdm f:ABdomf=A
5 vex fV
6 5 dmex domfV
7 4 6 eqeltrrdi f:ABAV
8 ffn f:ABfFnA
9 fnrndomg AVfFnAranfA
10 7 8 9 sylc f:ABranfA
11 10 adantr f:ABxA[˙fx/y]˙φranfA
12 frn f:ABranfB
13 12 adantr f:ABxA[˙fx/y]˙φranfB
14 nfv xf:AB
15 nfra1 xxA[˙fx/y]˙φ
16 14 15 nfan xf:ABxA[˙fx/y]˙φ
17 ffun f:ABFunf
18 17 adantr f:ABxAFunf
19 4 eleq2d f:ABxdomfxA
20 19 biimpar f:ABxAxdomf
21 fvelrn Funfxdomffxranf
22 18 20 21 syl2anc f:ABxAfxranf
23 22 adantlr f:ABxA[˙fx/y]˙φxAfxranf
24 rspa xA[˙fx/y]˙φxA[˙fx/y]˙φ
25 24 adantll f:ABxA[˙fx/y]˙φxA[˙fx/y]˙φ
26 rspesbca fxranf[˙fx/y]˙φyranfφ
27 23 25 26 syl2anc f:ABxA[˙fx/y]˙φxAyranfφ
28 27 ex f:ABxA[˙fx/y]˙φxAyranfφ
29 16 28 ralrimi f:ABxA[˙fx/y]˙φxAyranfφ
30 nfv yf:AB
31 nfcv _yA
32 31 1 nfralw yxA[˙fx/y]˙φ
33 30 32 nfan yf:ABxA[˙fx/y]˙φ
34 fvelrnb fFnAyranfxAfx=y
35 8 34 syl f:AByranfxAfx=y
36 35 adantr f:ABxA[˙fx/y]˙φyranfxAfx=y
37 rsp xA[˙fx/y]˙φxA[˙fx/y]˙φ
38 37 adantl f:ABxA[˙fx/y]˙φxA[˙fx/y]˙φ
39 2 eqcoms fx=yφ[˙fx/y]˙φ
40 39 biimprcd [˙fx/y]˙φfx=yφ
41 38 40 syl6 f:ABxA[˙fx/y]˙φxAfx=yφ
42 16 41 reximdai f:ABxA[˙fx/y]˙φxAfx=yxAφ
43 36 42 sylbid f:ABxA[˙fx/y]˙φyranfxAφ
44 33 43 ralrimi f:ABxA[˙fx/y]˙φyranfxAφ
45 5 rnex ranfV
46 breq1 c=ranfcAranfA
47 sseq1 c=ranfcBranfB
48 46 47 anbi12d c=ranfcAcBranfAranfB
49 rexeq c=ranfycφyranfφ
50 49 ralbidv c=ranfxAycφxAyranfφ
51 raleq c=ranfycxAφyranfxAφ
52 50 51 anbi12d c=ranfxAycφycxAφxAyranfφyranfxAφ
53 48 52 anbi12d c=ranfcAcBxAycφycxAφranfAranfBxAyranfφyranfxAφ
54 45 53 spcev ranfAranfBxAyranfφyranfxAφccAcBxAycφycxAφ
55 11 13 29 44 54 syl22anc f:ABxA[˙fx/y]˙φccAcBxAycφycxAφ
56 55 exlimiv ff:ABxA[˙fx/y]˙φccAcBxAycφycxAφ
57 3 56 syl AMxAyBφccAcBxAycφycxAφ