Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A , and which is dominated by the set A . (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | indexdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1v | |
|
2 | sbceq1a | |
|
3 | 1 2 | ac6gf | |
4 | fdm | |
|
5 | vex | |
|
6 | 5 | dmex | |
7 | 4 6 | eqeltrrdi | |
8 | ffn | |
|
9 | fnrndomg | |
|
10 | 7 8 9 | sylc | |
11 | 10 | adantr | |
12 | frn | |
|
13 | 12 | adantr | |
14 | nfv | |
|
15 | nfra1 | |
|
16 | 14 15 | nfan | |
17 | ffun | |
|
18 | 17 | adantr | |
19 | 4 | eleq2d | |
20 | 19 | biimpar | |
21 | fvelrn | |
|
22 | 18 20 21 | syl2anc | |
23 | 22 | adantlr | |
24 | rspa | |
|
25 | 24 | adantll | |
26 | rspesbca | |
|
27 | 23 25 26 | syl2anc | |
28 | 27 | ex | |
29 | 16 28 | ralrimi | |
30 | nfv | |
|
31 | nfcv | |
|
32 | 31 1 | nfralw | |
33 | 30 32 | nfan | |
34 | fvelrnb | |
|
35 | 8 34 | syl | |
36 | 35 | adantr | |
37 | rsp | |
|
38 | 37 | adantl | |
39 | 2 | eqcoms | |
40 | 39 | biimprcd | |
41 | 38 40 | syl6 | |
42 | 16 41 | reximdai | |
43 | 36 42 | sylbid | |
44 | 33 43 | ralrimi | |
45 | 5 | rnex | |
46 | breq1 | |
|
47 | sseq1 | |
|
48 | 46 47 | anbi12d | |
49 | rexeq | |
|
50 | 49 | ralbidv | |
51 | raleq | |
|
52 | 50 51 | anbi12d | |
53 | 48 52 | anbi12d | |
54 | 45 53 | spcev | |
55 | 11 13 29 44 54 | syl22anc | |
56 | 55 | exlimiv | |
57 | 3 56 | syl | |