Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invginvrid.b | |
|
invginvrid.u | |
||
invginvrid.n | |
||
invginvrid.i | |
||
invginvrid.t | |
||
Assertion | invginvrid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invginvrid.b | |
|
2 | invginvrid.u | |
|
3 | invginvrid.n | |
|
4 | invginvrid.i | |
|
5 | invginvrid.t | |
|
6 | eqid | |
|
7 | 6 | ringmgp | |
8 | 7 | 3ad2ant1 | |
9 | ringgrp | |
|
10 | 1 2 | unitcl | |
11 | 1 3 | grpinvcl | |
12 | 9 10 11 | syl2an | |
13 | 12 | 3adant2 | |
14 | 2 3 | unitnegcl | |
15 | 2 4 1 | ringinvcl | |
16 | 14 15 | syldan | |
17 | 16 | 3adant2 | |
18 | simp2 | |
|
19 | 6 1 | mgpbas | |
20 | 6 5 | mgpplusg | |
21 | 19 20 | mndass | |
22 | 21 | eqcomd | |
23 | 8 13 17 18 22 | syl13anc | |
24 | simp1 | |
|
25 | 14 | 3adant2 | |
26 | eqid | |
|
27 | 2 4 5 26 | unitrinv | |
28 | 24 25 27 | syl2anc | |
29 | 28 | oveq1d | |
30 | 1 5 26 | ringlidm | |
31 | 30 | 3adant3 | |
32 | 23 29 31 | 3eqtrd | |