Metamath Proof Explorer


Theorem invginvrid

Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018)

Ref Expression
Hypotheses invginvrid.b B=BaseR
invginvrid.u U=UnitR
invginvrid.n N=invgR
invginvrid.i I=invrR
invginvrid.t ·˙=R
Assertion invginvrid RRingXBYUNY·˙INY·˙X=X

Proof

Step Hyp Ref Expression
1 invginvrid.b B=BaseR
2 invginvrid.u U=UnitR
3 invginvrid.n N=invgR
4 invginvrid.i I=invrR
5 invginvrid.t ·˙=R
6 eqid mulGrpR=mulGrpR
7 6 ringmgp RRingmulGrpRMnd
8 7 3ad2ant1 RRingXBYUmulGrpRMnd
9 ringgrp RRingRGrp
10 1 2 unitcl YUYB
11 1 3 grpinvcl RGrpYBNYB
12 9 10 11 syl2an RRingYUNYB
13 12 3adant2 RRingXBYUNYB
14 2 3 unitnegcl RRingYUNYU
15 2 4 1 ringinvcl RRingNYUINYB
16 14 15 syldan RRingYUINYB
17 16 3adant2 RRingXBYUINYB
18 simp2 RRingXBYUXB
19 6 1 mgpbas B=BasemulGrpR
20 6 5 mgpplusg ·˙=+mulGrpR
21 19 20 mndass mulGrpRMndNYBINYBXBNY·˙INY·˙X=NY·˙INY·˙X
22 21 eqcomd mulGrpRMndNYBINYBXBNY·˙INY·˙X=NY·˙INY·˙X
23 8 13 17 18 22 syl13anc RRingXBYUNY·˙INY·˙X=NY·˙INY·˙X
24 simp1 RRingXBYURRing
25 14 3adant2 RRingXBYUNYU
26 eqid 1R=1R
27 2 4 5 26 unitrinv RRingNYUNY·˙INY=1R
28 24 25 27 syl2anc RRingXBYUNY·˙INY=1R
29 28 oveq1d RRingXBYUNY·˙INY·˙X=1R·˙X
30 1 5 26 ringlidm RRingXB1R·˙X=X
31 30 3adant3 RRingXBYU1R·˙X=X
32 23 29 31 3eqtrd RRingXBYUNY·˙INY·˙X=X