Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
ioombl
Next ⟩
iccmbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ioombl
Description:
An open real interval is measurable.
(Contributed by
Mario Carneiro
, 16-Jun-2014)
Ref
Expression
Assertion
ioombl
⊢
A
B
∈
dom
vol
Proof
Step
Hyp
Ref
Expression
1
snunioo
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
∪
A
B
=
A
B
2
1
3expa
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
∪
A
B
=
A
B
3
2
adantrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∪
A
B
=
A
B
4
lbico1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
∈
A
B
5
4
3expa
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
∈
A
B
6
5
adantrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∈
A
B
7
6
snssd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
⊆
A
B
8
iccid
⊢
A
∈
ℝ
*
→
A
A
=
A
9
8
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
A
=
A
10
9
ineq1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
A
∩
A
B
=
A
∩
A
B
11
simpll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∈
ℝ
*
12
simplr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
B
∈
ℝ
*
13
df-icc
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
≤
z
∧
z
≤
y
14
df-ioo
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
<
y
15
xrltnle
⊢
A
∈
ℝ
*
∧
w
∈
ℝ
*
→
A
<
w
↔
¬
w
≤
A
16
13
14
15
ixxdisj
⊢
A
∈
ℝ
*
∧
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
A
∩
A
B
=
∅
17
11
11
12
16
syl3anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
A
∩
A
B
=
∅
18
10
17
eqtr3d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∩
A
B
=
∅
19
uneqdifeq
⊢
A
⊆
A
B
∧
A
∩
A
B
=
∅
→
A
∪
A
B
=
A
B
↔
A
B
∖
A
=
A
B
20
7
18
19
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∪
A
B
=
A
B
↔
A
B
∖
A
=
A
B
21
3
20
mpbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
B
∖
A
=
A
B
22
mnfxr
⊢
−∞
∈
ℝ
*
23
22
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
−∞
∈
ℝ
*
24
simprr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
−∞
<
A
25
simprl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
<
B
26
xrre2
⊢
−∞
∈
ℝ
*
∧
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
−∞
<
A
∧
A
<
B
→
A
∈
ℝ
27
23
11
12
24
25
26
syl32anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∈
ℝ
28
icombl
⊢
A
∈
ℝ
∧
B
∈
ℝ
*
→
A
B
∈
dom
vol
29
27
12
28
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
B
∈
dom
vol
30
27
snssd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
⊆
ℝ
31
ovolsn
⊢
A
∈
ℝ
→
vol
*
A
=
0
32
27
31
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
vol
*
A
=
0
33
nulmbl
⊢
A
⊆
ℝ
∧
vol
*
A
=
0
→
A
∈
dom
vol
34
30
32
33
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
∈
dom
vol
35
difmbl
⊢
A
B
∈
dom
vol
∧
A
∈
dom
vol
→
A
B
∖
A
∈
dom
vol
36
29
34
35
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
B
∖
A
∈
dom
vol
37
21
36
eqeltrrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
∧
−∞
<
A
→
A
B
∈
dom
vol
38
37
expr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
<
A
→
A
B
∈
dom
vol
39
uncom
⊢
B
+∞
∪
−∞
B
=
−∞
B
∪
B
+∞
40
22
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
∈
ℝ
*
41
simplr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
∈
ℝ
*
42
pnfxr
⊢
+∞
∈
ℝ
*
43
42
a1i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
+∞
∈
ℝ
*
44
simpll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
∈
ℝ
*
45
mnfle
⊢
A
∈
ℝ
*
→
−∞
≤
A
46
45
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
≤
A
47
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
<
B
48
40
44
41
46
47
xrlelttrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
<
B
49
pnfge
⊢
B
∈
ℝ
*
→
B
≤
+∞
50
41
49
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
≤
+∞
51
df-ico
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
≤
z
∧
z
<
y
52
xrlenlt
⊢
B
∈
ℝ
*
∧
w
∈
ℝ
*
→
B
≤
w
↔
¬
w
<
B
53
xrltletr
⊢
w
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
w
<
B
∧
B
≤
+∞
→
w
<
+∞
54
xrltletr
⊢
−∞
∈
ℝ
*
∧
B
∈
ℝ
*
∧
w
∈
ℝ
*
→
−∞
<
B
∧
B
≤
w
→
−∞
<
w
55
14
51
52
14
53
54
ixxun
⊢
−∞
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
−∞
<
B
∧
B
≤
+∞
→
−∞
B
∪
B
+∞
=
−∞
+∞
56
40
41
43
48
50
55
syl32anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
B
∪
B
+∞
=
−∞
+∞
57
39
56
eqtrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
∪
−∞
B
=
−∞
+∞
58
ioomax
⊢
−∞
+∞
=
ℝ
59
57
58
eqtrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
∪
−∞
B
=
ℝ
60
ssun1
⊢
B
+∞
⊆
B
+∞
∪
−∞
B
61
60
59
sseqtrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
⊆
ℝ
62
incom
⊢
B
+∞
∩
−∞
B
=
−∞
B
∩
B
+∞
63
14
51
52
ixxdisj
⊢
−∞
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
−∞
B
∩
B
+∞
=
∅
64
40
41
43
63
syl3anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
B
∩
B
+∞
=
∅
65
62
64
eqtrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
∩
−∞
B
=
∅
66
uneqdifeq
⊢
B
+∞
⊆
ℝ
∧
B
+∞
∩
−∞
B
=
∅
→
B
+∞
∪
−∞
B
=
ℝ
↔
ℝ
∖
B
+∞
=
−∞
B
67
61
65
66
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
∪
−∞
B
=
ℝ
↔
ℝ
∖
B
+∞
=
−∞
B
68
59
67
mpbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
ℝ
∖
B
+∞
=
−∞
B
69
rembl
⊢
ℝ
∈
dom
vol
70
xrleloe
⊢
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
B
≤
+∞
↔
B
<
+∞
∨
B
=
+∞
71
41
42
70
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
≤
+∞
↔
B
<
+∞
∨
B
=
+∞
72
50
71
mpbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
<
+∞
∨
B
=
+∞
73
xrre2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
A
<
B
∧
B
<
+∞
→
B
∈
ℝ
74
73
expr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
A
<
B
→
B
<
+∞
→
B
∈
ℝ
75
42
74
mp3anl3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
<
+∞
→
B
∈
ℝ
76
75
orim1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
<
+∞
∨
B
=
+∞
→
B
∈
ℝ
∨
B
=
+∞
77
72
76
mpd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
∈
ℝ
∨
B
=
+∞
78
icombl1
⊢
B
∈
ℝ
→
B
+∞
∈
dom
vol
79
oveq1
⊢
B
=
+∞
→
B
+∞
=
+∞
+∞
80
pnfge
⊢
+∞
∈
ℝ
*
→
+∞
≤
+∞
81
42
80
ax-mp
⊢
+∞
≤
+∞
82
ico0
⊢
+∞
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
+∞
+∞
=
∅
↔
+∞
≤
+∞
83
42
42
82
mp2an
⊢
+∞
+∞
=
∅
↔
+∞
≤
+∞
84
81
83
mpbir
⊢
+∞
+∞
=
∅
85
79
84
eqtrdi
⊢
B
=
+∞
→
B
+∞
=
∅
86
0mbl
⊢
∅
∈
dom
vol
87
85
86
eqeltrdi
⊢
B
=
+∞
→
B
+∞
∈
dom
vol
88
78
87
jaoi
⊢
B
∈
ℝ
∨
B
=
+∞
→
B
+∞
∈
dom
vol
89
77
88
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
B
+∞
∈
dom
vol
90
difmbl
⊢
ℝ
∈
dom
vol
∧
B
+∞
∈
dom
vol
→
ℝ
∖
B
+∞
∈
dom
vol
91
69
89
90
sylancr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
ℝ
∖
B
+∞
∈
dom
vol
92
68
91
eqeltrrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
B
∈
dom
vol
93
oveq1
⊢
−∞
=
A
→
−∞
B
=
A
B
94
93
eleq1d
⊢
−∞
=
A
→
−∞
B
∈
dom
vol
↔
A
B
∈
dom
vol
95
92
94
syl5ibcom
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
=
A
→
A
B
∈
dom
vol
96
xrleloe
⊢
−∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
−∞
≤
A
↔
−∞
<
A
∨
−∞
=
A
97
22
44
96
sylancr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
≤
A
↔
−∞
<
A
∨
−∞
=
A
98
46
97
mpbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
−∞
<
A
∨
−∞
=
A
99
38
95
98
mpjaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
A
<
B
→
A
B
∈
dom
vol
100
ioo0
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
=
∅
↔
B
≤
A
101
xrlenlt
⊢
B
∈
ℝ
*
∧
A
∈
ℝ
*
→
B
≤
A
↔
¬
A
<
B
102
101
ancoms
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
≤
A
↔
¬
A
<
B
103
100
102
bitrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
=
∅
↔
¬
A
<
B
104
103
biimpar
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
<
B
→
A
B
=
∅
105
104
86
eqeltrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
<
B
→
A
B
∈
dom
vol
106
99
105
pm2.61dan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
∈
dom
vol
107
ndmioo
⊢
¬
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
=
∅
108
107
86
eqeltrdi
⊢
¬
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
B
∈
dom
vol
109
106
108
pm2.61i
⊢
A
B
∈
dom
vol