Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iprodefisum.1 | |
|
iprodefisum.2 | |
||
iprodefisum.3 | |
||
iprodefisum.4 | |
||
iprodefisum.5 | |
||
Assertion | iprodefisum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodefisum.1 | |
|
2 | iprodefisum.2 | |
|
3 | iprodefisum.3 | |
|
4 | iprodefisum.4 | |
|
5 | iprodefisum.5 | |
|
6 | 1 2 3 4 5 | isumcl | |
7 | efne0 | |
|
8 | 6 7 | syl | |
9 | efcn | |
|
10 | 9 | a1i | |
11 | fveq2 | |
|
12 | eqid | |
|
13 | fvex | |
|
14 | 11 12 13 | fvmpt | |
15 | 14 | adantl | |
16 | 3 4 | eqeltrd | |
17 | 15 16 | eqeltrd | |
18 | 1 2 17 | serf | |
19 | 1 | eqcomi | |
20 | 14 19 | eleq2s | |
21 | 20 | adantl | |
22 | 2 21 | seqfeq | |
23 | climdm | |
|
24 | 5 23 | sylib | |
25 | 22 24 | eqbrtrd | |
26 | climcl | |
|
27 | 24 26 | syl | |
28 | 1 2 10 18 25 27 | climcncf | |
29 | 11 | cbvmptv | |
30 | 16 29 | fmptd | |
31 | 1 2 30 | iprodefisumlem | |
32 | 1 2 3 4 | isum | |
33 | 32 | fveq2d | |
34 | 28 31 33 | 3brtr4d | |
35 | fvco3 | |
|
36 | 30 35 | sylan | |
37 | 15 | fveq2d | |
38 | 3 | fveq2d | |
39 | 36 37 38 | 3eqtrd | |
40 | efcl | |
|
41 | 4 40 | syl | |
42 | 1 2 8 34 39 41 | iprodn0 | |