| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodefisum.1 |  | 
						
							| 2 |  | iprodefisum.2 |  | 
						
							| 3 |  | iprodefisum.3 |  | 
						
							| 4 |  | iprodefisum.4 |  | 
						
							| 5 |  | iprodefisum.5 |  | 
						
							| 6 | 1 2 3 4 5 | isumcl |  | 
						
							| 7 |  | efne0 |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | efcn |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | fvex |  | 
						
							| 14 | 11 12 13 | fvmpt |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 3 4 | eqeltrd |  | 
						
							| 17 | 15 16 | eqeltrd |  | 
						
							| 18 | 1 2 17 | serf |  | 
						
							| 19 | 1 | eqcomi |  | 
						
							| 20 | 14 19 | eleq2s |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 | 2 21 | seqfeq |  | 
						
							| 23 |  | climdm |  | 
						
							| 24 | 5 23 | sylib |  | 
						
							| 25 | 22 24 | eqbrtrd |  | 
						
							| 26 |  | climcl |  | 
						
							| 27 | 24 26 | syl |  | 
						
							| 28 | 1 2 10 18 25 27 | climcncf |  | 
						
							| 29 | 11 | cbvmptv |  | 
						
							| 30 | 16 29 | fmptd |  | 
						
							| 31 | 1 2 30 | iprodefisumlem |  | 
						
							| 32 | 1 2 3 4 | isum |  | 
						
							| 33 | 32 | fveq2d |  | 
						
							| 34 | 28 31 33 | 3brtr4d |  | 
						
							| 35 |  | fvco3 |  | 
						
							| 36 | 30 35 | sylan |  | 
						
							| 37 | 15 | fveq2d |  | 
						
							| 38 | 3 | fveq2d |  | 
						
							| 39 | 36 37 38 | 3eqtrd |  | 
						
							| 40 |  | efcl |  | 
						
							| 41 | 4 40 | syl |  | 
						
							| 42 | 1 2 8 34 39 41 | iprodn0 |  |