Metamath Proof Explorer


Theorem iprodefisum

Description: Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018)

Ref Expression
Hypotheses iprodefisum.1 Z=M
iprodefisum.2 φM
iprodefisum.3 φkZFk=B
iprodefisum.4 φkZB
iprodefisum.5 φseqM+Fdom
Assertion iprodefisum φkZeB=ekZB

Proof

Step Hyp Ref Expression
1 iprodefisum.1 Z=M
2 iprodefisum.2 φM
3 iprodefisum.3 φkZFk=B
4 iprodefisum.4 φkZB
5 iprodefisum.5 φseqM+Fdom
6 1 2 3 4 5 isumcl φkZB
7 efne0 kZBekZB0
8 6 7 syl φekZB0
9 efcn exp:cn
10 9 a1i φexp:cn
11 fveq2 j=kFj=Fk
12 eqid jZFj=jZFj
13 fvex FkV
14 11 12 13 fvmpt kZjZFjk=Fk
15 14 adantl φkZjZFjk=Fk
16 3 4 eqeltrd φkZFk
17 15 16 eqeltrd φkZjZFjk
18 1 2 17 serf φseqM+jZFj:Z
19 1 eqcomi M=Z
20 14 19 eleq2s kMjZFjk=Fk
21 20 adantl φkMjZFjk=Fk
22 2 21 seqfeq φseqM+jZFj=seqM+F
23 climdm seqM+FdomseqM+FseqM+F
24 5 23 sylib φseqM+FseqM+F
25 22 24 eqbrtrd φseqM+jZFjseqM+F
26 climcl seqM+FseqM+FseqM+F
27 24 26 syl φseqM+F
28 1 2 10 18 25 27 climcncf φexpseqM+jZFjeseqM+F
29 11 cbvmptv jZFj=kZFk
30 16 29 fmptd φjZFj:Z
31 1 2 30 iprodefisumlem φseqM×expjZFj=expseqM+jZFj
32 1 2 3 4 isum φkZB=seqM+F
33 32 fveq2d φekZB=eseqM+F
34 28 31 33 3brtr4d φseqM×expjZFjekZB
35 fvco3 jZFj:ZkZexpjZFjk=ejZFjk
36 30 35 sylan φkZexpjZFjk=ejZFjk
37 15 fveq2d φkZejZFjk=eFk
38 3 fveq2d φkZeFk=eB
39 36 37 38 3eqtrd φkZexpjZFjk=eB
40 efcl BeB
41 4 40 syl φkZeB
42 1 2 8 34 39 41 iprodn0 φkZeB=ekZB