Metamath Proof Explorer


Theorem irrdifflemf

Description: Lemma for irrdiff . The forward direction. (Contributed by Jim Kingdon, 20-May-2024)

Ref Expression
Hypotheses irrdifflemf.a φ A
irrdifflemf.irr φ ¬ A
irrdifflemf.q φ Q
irrdifflemf.r φ R
irrdifflemf.qr φ Q R
Assertion irrdifflemf φ A Q A R

Proof

Step Hyp Ref Expression
1 irrdifflemf.a φ A
2 irrdifflemf.irr φ ¬ A
3 irrdifflemf.q φ Q
4 irrdifflemf.r φ R
5 irrdifflemf.qr φ Q R
6 simplll φ A Q = A R A Q = A Q A R = A R φ
7 simpllr φ A Q = A R A Q = A Q A R = A R A Q = A R
8 simplr φ A Q = A R A Q = A Q A R = A R A Q = A Q
9 simpr φ A Q = A R A Q = A Q A R = A R A R = A R
10 7 8 9 3eqtr3d φ A Q = A R A Q = A Q A R = A R A Q = A R
11 1 recnd φ A
12 11 adantr φ A Q = A R A
13 qre Q Q
14 3 13 syl φ Q
15 14 recnd φ Q
16 15 adantr φ A Q = A R Q
17 qre R R
18 4 17 syl φ R
19 18 recnd φ R
20 19 adantr φ A Q = A R R
21 simpr φ A Q = A R A Q = A R
22 12 16 20 21 subcand φ A Q = A R Q = R
23 5 adantr φ A Q = A R Q R
24 22 23 pm2.21ddne φ A Q = A R
25 6 10 24 syl2anc φ A Q = A R A Q = A Q A R = A R
26 simplll φ A Q = A R A Q = A Q A R = A R φ
27 simpllr φ A Q = A R A Q = A Q A R = A R A Q = A R
28 simplr φ A Q = A R A Q = A Q A R = A R A Q = A Q
29 simpr φ A Q = A R A Q = A Q A R = A R A R = A R
30 27 28 29 3eqtr3d φ A Q = A R A Q = A Q A R = A R A Q = A R
31 2cnd φ A Q = A R 2
32 11 adantr φ A Q = A R A
33 2ne0 2 0
34 33 a1i φ A Q = A R 2 0
35 32 2timesd φ A Q = A R 2 A = A + A
36 simpr φ A Q = A R A Q = A R
37 19 adantr φ A Q = A R R
38 32 37 negsubdi2d φ A Q = A R A R = R A
39 36 38 eqtrd φ A Q = A R A Q = R A
40 15 adantr φ A Q = A R Q
41 40 37 32 32 addsubeq4d φ A Q = A R Q + R = A + A A Q = R A
42 39 41 mpbird φ A Q = A R Q + R = A + A
43 35 42 eqtr4d φ A Q = A R 2 A = Q + R
44 31 32 34 43 mvllmuld φ A Q = A R A = Q + R 2
45 3 adantr φ A Q = A R Q
46 4 adantr φ A Q = A R R
47 qaddcl Q R Q + R
48 45 46 47 syl2anc φ A Q = A R Q + R
49 2z 2
50 zq 2 2
51 49 50 mp1i φ A Q = A R 2
52 qdivcl Q + R 2 2 0 Q + R 2
53 48 51 34 52 syl3anc φ A Q = A R Q + R 2
54 44 53 eqeltrd φ A Q = A R A
55 2 adantr φ A Q = A R ¬ A
56 54 55 pm2.21fal φ A Q = A R
57 26 30 56 syl2anc φ A Q = A R A Q = A Q A R = A R
58 1 18 resubcld φ A R
59 58 absord φ A R = A R A R = A R
60 59 ad2antrr φ A Q = A R A Q = A Q A R = A R A R = A R
61 25 57 60 mpjaodan φ A Q = A R A Q = A Q
62 simplll φ A Q = A R A Q = A Q A R = A R φ
63 simpllr φ A Q = A R A Q = A Q A R = A R A Q = A R
64 simplr φ A Q = A R A Q = A Q A R = A R A Q = A Q
65 simpr φ A Q = A R A Q = A Q A R = A R A R = A R
66 63 64 65 3eqtr3rd φ A Q = A R A Q = A Q A R = A R A R = A Q
67 58 recnd φ A R
68 67 ad3antrrr φ A Q = A R A Q = A Q A R = A R A R
69 1 14 resubcld φ A Q
70 69 recnd φ A Q
71 70 ad3antrrr φ A Q = A R A Q = A Q A R = A R A Q
72 negcon2 A R A Q A R = A Q A Q = A R
73 68 71 72 syl2anc φ A Q = A R A Q = A Q A R = A R A R = A Q A Q = A R
74 66 73 mpbid φ A Q = A R A Q = A Q A R = A R A Q = A R
75 62 74 56 syl2anc φ A Q = A R A Q = A Q A R = A R
76 simplll φ A Q = A R A Q = A Q A R = A R φ
77 70 ad3antrrr φ A Q = A R A Q = A Q A R = A R A Q
78 67 ad3antrrr φ A Q = A R A Q = A Q A R = A R A R
79 simpllr φ A Q = A R A Q = A Q A R = A R A Q = A R
80 simplr φ A Q = A R A Q = A Q A R = A R A Q = A Q
81 simpr φ A Q = A R A Q = A Q A R = A R A R = A R
82 79 80 81 3eqtr3d φ A Q = A R A Q = A Q A R = A R A Q = A R
83 77 78 82 neg11d φ A Q = A R A Q = A Q A R = A R A Q = A R
84 76 83 24 syl2anc φ A Q = A R A Q = A Q A R = A R
85 59 ad2antrr φ A Q = A R A Q = A Q A R = A R A R = A R
86 75 84 85 mpjaodan φ A Q = A R A Q = A Q
87 69 absord φ A Q = A Q A Q = A Q
88 87 adantr φ A Q = A R A Q = A Q A Q = A Q
89 61 86 88 mpjaodan φ A Q = A R
90 89 ex φ A Q = A R
91 df-ne A Q A R ¬ A Q = A R
92 dfnot ¬ A Q = A R A Q = A R
93 91 92 bitri A Q A R A Q = A R
94 90 93 sylibr φ A Q A R