Metamath Proof Explorer


Theorem irrdifflemf

Description: Lemma for irrdiff . The forward direction. (Contributed by Jim Kingdon, 20-May-2024)

Ref Expression
Hypotheses irrdifflemf.a φA
irrdifflemf.irr φ¬A
irrdifflemf.q φQ
irrdifflemf.r φR
irrdifflemf.qr φQR
Assertion irrdifflemf φAQAR

Proof

Step Hyp Ref Expression
1 irrdifflemf.a φA
2 irrdifflemf.irr φ¬A
3 irrdifflemf.q φQ
4 irrdifflemf.r φR
5 irrdifflemf.qr φQR
6 simplll φAQ=ARAQ=AQAR=ARφ
7 simpllr φAQ=ARAQ=AQAR=ARAQ=AR
8 simplr φAQ=ARAQ=AQAR=ARAQ=AQ
9 simpr φAQ=ARAQ=AQAR=ARAR=AR
10 7 8 9 3eqtr3d φAQ=ARAQ=AQAR=ARAQ=AR
11 1 recnd φA
12 11 adantr φAQ=ARA
13 qre QQ
14 3 13 syl φQ
15 14 recnd φQ
16 15 adantr φAQ=ARQ
17 qre RR
18 4 17 syl φR
19 18 recnd φR
20 19 adantr φAQ=ARR
21 simpr φAQ=ARAQ=AR
22 12 16 20 21 subcand φAQ=ARQ=R
23 5 adantr φAQ=ARQR
24 22 23 pm2.21ddne φAQ=AR
25 6 10 24 syl2anc φAQ=ARAQ=AQAR=AR
26 simplll φAQ=ARAQ=AQAR=ARφ
27 simpllr φAQ=ARAQ=AQAR=ARAQ=AR
28 simplr φAQ=ARAQ=AQAR=ARAQ=AQ
29 simpr φAQ=ARAQ=AQAR=ARAR=AR
30 27 28 29 3eqtr3d φAQ=ARAQ=AQAR=ARAQ=AR
31 2cnd φAQ=AR2
32 11 adantr φAQ=ARA
33 2ne0 20
34 33 a1i φAQ=AR20
35 32 2timesd φAQ=AR2A=A+A
36 simpr φAQ=ARAQ=AR
37 19 adantr φAQ=ARR
38 32 37 negsubdi2d φAQ=ARAR=RA
39 36 38 eqtrd φAQ=ARAQ=RA
40 15 adantr φAQ=ARQ
41 40 37 32 32 addsubeq4d φAQ=ARQ+R=A+AAQ=RA
42 39 41 mpbird φAQ=ARQ+R=A+A
43 35 42 eqtr4d φAQ=AR2A=Q+R
44 31 32 34 43 mvllmuld φAQ=ARA=Q+R2
45 3 adantr φAQ=ARQ
46 4 adantr φAQ=ARR
47 qaddcl QRQ+R
48 45 46 47 syl2anc φAQ=ARQ+R
49 2z 2
50 zq 22
51 49 50 mp1i φAQ=AR2
52 qdivcl Q+R220Q+R2
53 48 51 34 52 syl3anc φAQ=ARQ+R2
54 44 53 eqeltrd φAQ=ARA
55 2 adantr φAQ=AR¬A
56 54 55 pm2.21fal φAQ=AR
57 26 30 56 syl2anc φAQ=ARAQ=AQAR=AR
58 1 18 resubcld φAR
59 58 absord φAR=ARAR=AR
60 59 ad2antrr φAQ=ARAQ=AQAR=ARAR=AR
61 25 57 60 mpjaodan φAQ=ARAQ=AQ
62 simplll φAQ=ARAQ=AQAR=ARφ
63 simpllr φAQ=ARAQ=AQAR=ARAQ=AR
64 simplr φAQ=ARAQ=AQAR=ARAQ=AQ
65 simpr φAQ=ARAQ=AQAR=ARAR=AR
66 63 64 65 3eqtr3rd φAQ=ARAQ=AQAR=ARAR=AQ
67 58 recnd φAR
68 67 ad3antrrr φAQ=ARAQ=AQAR=ARAR
69 1 14 resubcld φAQ
70 69 recnd φAQ
71 70 ad3antrrr φAQ=ARAQ=AQAR=ARAQ
72 negcon2 ARAQAR=AQAQ=AR
73 68 71 72 syl2anc φAQ=ARAQ=AQAR=ARAR=AQAQ=AR
74 66 73 mpbid φAQ=ARAQ=AQAR=ARAQ=AR
75 62 74 56 syl2anc φAQ=ARAQ=AQAR=AR
76 simplll φAQ=ARAQ=AQAR=ARφ
77 70 ad3antrrr φAQ=ARAQ=AQAR=ARAQ
78 67 ad3antrrr φAQ=ARAQ=AQAR=ARAR
79 simpllr φAQ=ARAQ=AQAR=ARAQ=AR
80 simplr φAQ=ARAQ=AQAR=ARAQ=AQ
81 simpr φAQ=ARAQ=AQAR=ARAR=AR
82 79 80 81 3eqtr3d φAQ=ARAQ=AQAR=ARAQ=AR
83 77 78 82 neg11d φAQ=ARAQ=AQAR=ARAQ=AR
84 76 83 24 syl2anc φAQ=ARAQ=AQAR=AR
85 59 ad2antrr φAQ=ARAQ=AQAR=ARAR=AR
86 75 84 85 mpjaodan φAQ=ARAQ=AQ
87 69 absord φAQ=AQAQ=AQ
88 87 adantr φAQ=ARAQ=AQAQ=AQ
89 61 86 88 mpjaodan φAQ=AR
90 89 ex φAQ=AR
91 df-ne AQAR¬AQ=AR
92 dfnot ¬AQ=ARAQ=AR
93 91 92 bitri AQARAQ=AR
94 90 93 sylibr φAQAR