Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Miscellaneous
isbasisrelowllem1
Next ⟩
isbasisrelowllem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isbasisrelowllem1
Description:
Lemma for
isbasisrelowl
.
(Contributed by
ML
, 27-Jul-2020)
Ref
Expression
Hypothesis
isbasisrelowl.1
⊢
I
=
.
ℝ
2
Assertion
isbasisrelowllem1
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
x
∩
y
∈
I
Proof
Step
Hyp
Ref
Expression
1
isbasisrelowl.1
⊢
I
=
.
ℝ
2
2
simplr1
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
c
∈
ℝ
3
simpll2
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
b
∈
ℝ
4
nfv
⊢
Ⅎ
z
a
∈
ℝ
5
nfv
⊢
Ⅎ
z
b
∈
ℝ
6
nfrab1
⊢
Ⅎ
_
z
z
∈
ℝ
|
a
≤
z
∧
z
<
b
7
6
nfeq2
⊢
Ⅎ
z
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
8
4
5
7
nf3an
⊢
Ⅎ
z
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
9
nfv
⊢
Ⅎ
z
c
∈
ℝ
10
nfv
⊢
Ⅎ
z
d
∈
ℝ
11
nfrab1
⊢
Ⅎ
_
z
z
∈
ℝ
|
c
≤
z
∧
z
<
d
12
11
nfeq2
⊢
Ⅎ
z
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
13
9
10
12
nf3an
⊢
Ⅎ
z
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
14
8
13
nfan
⊢
Ⅎ
z
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
15
nfv
⊢
Ⅎ
z
a
≤
c
∧
b
≤
d
16
14
15
nfan
⊢
Ⅎ
z
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
17
nfcv
⊢
Ⅎ
_
z
x
∩
y
18
nfrab1
⊢
Ⅎ
_
z
z
∈
ℝ
|
c
≤
z
∧
z
<
b
19
simp3
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
20
simp3
⊢
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
21
elin
⊢
z
∈
x
∩
y
↔
z
∈
x
∧
z
∈
y
22
eleq2
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
z
∈
x
↔
z
∈
z
∈
ℝ
|
a
≤
z
∧
z
<
b
23
rabid
⊢
z
∈
z
∈
ℝ
|
a
≤
z
∧
z
<
b
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
24
22
23
bitrdi
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
z
∈
x
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
25
24
anbi1d
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
z
∈
x
∧
z
∈
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
y
26
21
25
bitrid
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
y
27
eleq2
⊢
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
y
↔
z
∈
z
∈
ℝ
|
c
≤
z
∧
z
<
d
28
rabid
⊢
z
∈
z
∈
ℝ
|
c
≤
z
∧
z
<
d
↔
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
29
27
28
bitrdi
⊢
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
y
↔
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
30
29
anbi2d
⊢
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
31
26
30
sylan9bb
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
32
an4
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
↔
z
∈
ℝ
∧
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
33
anidm
⊢
z
∈
ℝ
∧
z
∈
ℝ
↔
z
∈
ℝ
34
33
anbi1i
⊢
z
∈
ℝ
∧
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
35
32
34
bitri
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
z
∈
ℝ
∧
c
≤
z
∧
z
<
d
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
36
31
35
bitrdi
⊢
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
37
19
20
36
syl2an
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
38
37
adantr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
39
simpl
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
→
z
∈
ℝ
40
simprrl
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
→
c
≤
z
41
simprlr
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
→
z
<
b
42
39
40
41
jca32
⊢
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
→
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
43
38
42
syl6bi
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
z
∈
x
∩
y
→
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
44
3simpa
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
→
a
∈
ℝ
∧
b
∈
ℝ
45
3simpa
⊢
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
c
∈
ℝ
∧
d
∈
ℝ
46
44
45
anim12i
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
→
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
47
letr
⊢
a
∈
ℝ
∧
c
∈
ℝ
∧
z
∈
ℝ
→
a
≤
c
∧
c
≤
z
→
a
≤
z
48
47
3expia
⊢
a
∈
ℝ
∧
c
∈
ℝ
→
z
∈
ℝ
→
a
≤
c
∧
c
≤
z
→
a
≤
z
49
48
exp4a
⊢
a
∈
ℝ
∧
c
∈
ℝ
→
z
∈
ℝ
→
a
≤
c
→
c
≤
z
→
a
≤
z
50
49
ad2ant2r
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
z
∈
ℝ
→
a
≤
c
→
c
≤
z
→
a
≤
z
51
ltletr
⊢
z
∈
ℝ
∧
b
∈
ℝ
∧
d
∈
ℝ
→
z
<
b
∧
b
≤
d
→
z
<
d
52
51
3coml
⊢
b
∈
ℝ
∧
d
∈
ℝ
∧
z
∈
ℝ
→
z
<
b
∧
b
≤
d
→
z
<
d
53
52
expcomd
⊢
b
∈
ℝ
∧
d
∈
ℝ
∧
z
∈
ℝ
→
b
≤
d
→
z
<
b
→
z
<
d
54
53
3expia
⊢
b
∈
ℝ
∧
d
∈
ℝ
→
z
∈
ℝ
→
b
≤
d
→
z
<
b
→
z
<
d
55
54
ad2ant2l
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
z
∈
ℝ
→
b
≤
d
→
z
<
b
→
z
<
d
56
50
55
jcad
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
z
∈
ℝ
→
a
≤
c
→
c
≤
z
→
a
≤
z
∧
b
≤
d
→
z
<
b
→
z
<
d
57
anim12
⊢
a
≤
c
→
c
≤
z
→
a
≤
z
∧
b
≤
d
→
z
<
b
→
z
<
d
→
a
≤
c
∧
b
≤
d
→
c
≤
z
→
a
≤
z
∧
z
<
b
→
z
<
d
58
56
57
syl6
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
z
∈
ℝ
→
a
≤
c
∧
b
≤
d
→
c
≤
z
→
a
≤
z
∧
z
<
b
→
z
<
d
59
58
com23
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
a
≤
c
∧
b
≤
d
→
z
∈
ℝ
→
c
≤
z
→
a
≤
z
∧
z
<
b
→
z
<
d
60
anim12
⊢
c
≤
z
→
a
≤
z
∧
z
<
b
→
z
<
d
→
c
≤
z
∧
z
<
b
→
a
≤
z
∧
z
<
d
61
59
60
syl8
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
→
a
≤
c
∧
b
≤
d
→
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
a
≤
z
∧
z
<
d
62
61
imp31
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
a
≤
z
∧
z
<
d
63
62
ancrd
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
a
≤
z
∧
z
<
d
∧
c
≤
z
∧
z
<
b
64
an42
⊢
a
≤
z
∧
z
<
d
∧
c
≤
z
∧
z
<
b
↔
a
≤
z
∧
c
≤
z
∧
z
<
b
∧
z
<
d
65
an4
⊢
a
≤
z
∧
c
≤
z
∧
z
<
b
∧
z
<
d
↔
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
66
64
65
bitri
⊢
a
≤
z
∧
z
<
d
∧
c
≤
z
∧
z
<
b
↔
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
67
63
66
imbitrdi
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
68
simpr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
z
∈
ℝ
69
67
68
jctild
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
70
46
69
sylanl1
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
→
c
≤
z
∧
z
<
b
→
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
71
70
imp
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
→
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
72
71
an32s
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
c
≤
z
∧
z
<
b
∧
z
∈
ℝ
→
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
73
38
adantr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
c
≤
z
∧
z
<
b
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
74
73
adantr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
c
≤
z
∧
z
<
b
∧
z
∈
ℝ
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
a
≤
z
∧
z
<
b
∧
c
≤
z
∧
z
<
d
75
72
74
mpbird
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
∧
c
≤
z
∧
z
<
b
∧
z
∈
ℝ
→
z
∈
x
∩
y
76
75
expl
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
c
≤
z
∧
z
<
b
∧
z
∈
ℝ
→
z
∈
x
∩
y
77
76
ancomsd
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
→
z
∈
x
∩
y
78
43
77
impbid
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
z
∈
x
∩
y
↔
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
79
rabid
⊢
z
∈
z
∈
ℝ
|
c
≤
z
∧
z
<
b
↔
z
∈
ℝ
∧
c
≤
z
∧
z
<
b
80
78
79
bitr4di
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
z
∈
x
∩
y
↔
z
∈
z
∈
ℝ
|
c
≤
z
∧
z
<
b
81
16
17
18
80
eqrd
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
82
3
81
jca
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
b
∈
ℝ
∧
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
83
82
19.8ad
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
∃
b
b
∈
ℝ
∧
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
84
df-rex
⊢
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
↔
∃
b
b
∈
ℝ
∧
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
85
83
84
sylibr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
86
2
85
jca
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
c
∈
ℝ
∧
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
87
86
19.8ad
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
∃
c
c
∈
ℝ
∧
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
88
df-rex
⊢
∃
c
∈
ℝ
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
↔
∃
c
c
∈
ℝ
∧
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
89
87
88
sylibr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
∃
c
∈
ℝ
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
90
1
icoreelrnab
⊢
x
∩
y
∈
I
↔
∃
c
∈
ℝ
∃
b
∈
ℝ
x
∩
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
b
91
89
90
sylibr
⊢
a
∈
ℝ
∧
b
∈
ℝ
∧
x
=
z
∈
ℝ
|
a
≤
z
∧
z
<
b
∧
c
∈
ℝ
∧
d
∈
ℝ
∧
y
=
z
∈
ℝ
|
c
≤
z
∧
z
<
d
∧
a
≤
c
∧
b
≤
d
→
x
∩
y
∈
I