| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscatd2.b |
|
| 2 |
|
iscatd2.h |
|
| 3 |
|
iscatd2.o |
|
| 4 |
|
iscatd2.c |
|
| 5 |
|
iscatd2.ps |
|
| 6 |
|
iscatd2.1 |
|
| 7 |
|
iscatd2.2 |
|
| 8 |
|
iscatd2.3 |
|
| 9 |
|
iscatd2.4 |
|
| 10 |
|
iscatd2.5 |
|
| 11 |
6
|
ne0d |
|
| 12 |
11
|
3ad2antr1 |
|
| 13 |
|
n0 |
|
| 14 |
12 13
|
sylib |
|
| 15 |
|
n0 |
|
| 16 |
12 15
|
sylib |
|
| 17 |
|
exdistrv |
|
| 18 |
|
simpll |
|
| 19 |
|
simplr2 |
|
| 20 |
|
simplr1 |
|
| 21 |
19 20
|
jca |
|
| 22 |
|
simplr3 |
|
| 23 |
|
simprl |
|
| 24 |
|
simprr |
|
| 25 |
22 23 24
|
3jca |
|
| 26 |
|
simplll |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
anbi1d |
|
| 29 |
|
simpllr |
|
| 30 |
29
|
eleq1d |
|
| 31 |
|
simplr |
|
| 32 |
31
|
eleq1d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
|
anidm |
|
| 35 |
33 34
|
bitrdi |
|
| 36 |
|
simpr |
|
| 37 |
26
|
oveq1d |
|
| 38 |
36 37
|
eleq12d |
|
| 39 |
29
|
oveq2d |
|
| 40 |
39
|
eleq2d |
|
| 41 |
29 31
|
oveq12d |
|
| 42 |
41
|
eleq2d |
|
| 43 |
38 40 42
|
3anbi123d |
|
| 44 |
28 35 43
|
3anbi123d |
|
| 45 |
5 44
|
bitrid |
|
| 46 |
45
|
anbi2d |
|
| 47 |
26
|
opeq1d |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
eqidd |
|
| 50 |
48 49 36
|
oveq123d |
|
| 51 |
50 36
|
eqeq12d |
|
| 52 |
46 51
|
imbi12d |
|
| 53 |
52
|
sbiedvw |
|
| 54 |
53
|
sbiedvw |
|
| 55 |
54
|
sbiedvw |
|
| 56 |
7
|
sbt |
|
| 57 |
56
|
sbt |
|
| 58 |
57
|
sbt |
|
| 59 |
55 58
|
chvarvv |
|
| 60 |
18 21 20 25 59
|
syl13anc |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
exlimdvv |
|
| 63 |
17 62
|
biimtrrid |
|
| 64 |
14 16 63
|
mp2and |
|
| 65 |
11
|
3ad2antr1 |
|
| 66 |
|
n0 |
|
| 67 |
65 66
|
sylib |
|
| 68 |
|
id |
|
| 69 |
68 68
|
oveq12d |
|
| 70 |
69
|
neeq1d |
|
| 71 |
11
|
ralrimiva |
|
| 72 |
71
|
adantr |
|
| 73 |
|
simpr2 |
|
| 74 |
70 72 73
|
rspcdva |
|
| 75 |
|
n0 |
|
| 76 |
74 75
|
sylib |
|
| 77 |
|
exdistrv |
|
| 78 |
|
simpll |
|
| 79 |
|
simplr1 |
|
| 80 |
|
simplr2 |
|
| 81 |
|
simprl |
|
| 82 |
|
simplr3 |
|
| 83 |
|
simprr |
|
| 84 |
81 82 83
|
3jca |
|
| 85 |
|
simplll |
|
| 86 |
85
|
eleq1d |
|
| 87 |
86
|
anbi1d |
|
| 88 |
87 34
|
bitrdi |
|
| 89 |
|
simpllr |
|
| 90 |
89
|
eleq1d |
|
| 91 |
|
simplr |
|
| 92 |
91
|
eleq1d |
|
| 93 |
90 92
|
anbi12d |
|
| 94 |
|
anidm |
|
| 95 |
93 94
|
bitrdi |
|
| 96 |
85
|
oveq1d |
|
| 97 |
96
|
eleq2d |
|
| 98 |
|
simpr |
|
| 99 |
89
|
oveq2d |
|
| 100 |
98 99
|
eleq12d |
|
| 101 |
89 91
|
oveq12d |
|
| 102 |
101
|
eleq2d |
|
| 103 |
97 100 102
|
3anbi123d |
|
| 104 |
88 95 103
|
3anbi123d |
|
| 105 |
5 104
|
bitrid |
|
| 106 |
105
|
anbi2d |
|
| 107 |
89
|
oveq2d |
|
| 108 |
|
eqidd |
|
| 109 |
107 98 108
|
oveq123d |
|
| 110 |
109 98
|
eqeq12d |
|
| 111 |
106 110
|
imbi12d |
|
| 112 |
111
|
sbiedvw |
|
| 113 |
112
|
sbiedvw |
|
| 114 |
113
|
sbiedvw |
|
| 115 |
8
|
sbt |
|
| 116 |
115
|
sbt |
|
| 117 |
116
|
sbt |
|
| 118 |
114 117
|
chvarvv |
|
| 119 |
78 79 80 84 118
|
syl13anc |
|
| 120 |
119
|
ex |
|
| 121 |
120
|
exlimdvv |
|
| 122 |
77 121
|
biimtrrid |
|
| 123 |
67 76 122
|
mp2and |
|
| 124 |
|
id |
|
| 125 |
124 124
|
oveq12d |
|
| 126 |
125
|
neeq1d |
|
| 127 |
71
|
3ad2ant1 |
|
| 128 |
|
simp23 |
|
| 129 |
126 127 128
|
rspcdva |
|
| 130 |
|
n0 |
|
| 131 |
129 130
|
sylib |
|
| 132 |
|
eleq1w |
|
| 133 |
132
|
3anbi1d |
|
| 134 |
|
oveq1 |
|
| 135 |
134
|
eleq2d |
|
| 136 |
135
|
anbi1d |
|
| 137 |
136
|
anbi1d |
|
| 138 |
133 137
|
anbi12d |
|
| 139 |
138
|
anbi2d |
|
| 140 |
|
opeq1 |
|
| 141 |
140
|
oveq1d |
|
| 142 |
141
|
oveqd |
|
| 143 |
|
oveq1 |
|
| 144 |
142 143
|
eleq12d |
|
| 145 |
139 144
|
imbi12d |
|
| 146 |
|
df-3an |
|
| 147 |
5 146
|
bitri |
|
| 148 |
|
simpll |
|
| 149 |
148
|
eleq1d |
|
| 150 |
149
|
anbi2d |
|
| 151 |
|
simplr |
|
| 152 |
151
|
eleq1d |
|
| 153 |
152
|
anbi2d |
|
| 154 |
|
anidm |
|
| 155 |
153 154
|
bitrdi |
|
| 156 |
150 155
|
anbi12d |
|
| 157 |
|
df-3an |
|
| 158 |
156 157
|
bitr4di |
|
| 159 |
|
simpr |
|
| 160 |
148
|
oveq2d |
|
| 161 |
159 160
|
eleq12d |
|
| 162 |
148
|
oveq1d |
|
| 163 |
162
|
eleq2d |
|
| 164 |
151
|
oveq2d |
|
| 165 |
164
|
eleq2d |
|
| 166 |
161 163 165
|
3anbi123d |
|
| 167 |
|
df-3an |
|
| 168 |
166 167
|
bitrdi |
|
| 169 |
158 168
|
anbi12d |
|
| 170 |
147 169
|
bitrid |
|
| 171 |
170
|
anbi2d |
|
| 172 |
148
|
opeq2d |
|
| 173 |
172
|
oveq1d |
|
| 174 |
|
eqidd |
|
| 175 |
173 174 159
|
oveq123d |
|
| 176 |
175
|
eleq1d |
|
| 177 |
171 176
|
imbi12d |
|
| 178 |
177
|
sbiedvw |
|
| 179 |
178
|
sbiedvw |
|
| 180 |
9
|
sbt |
|
| 181 |
180
|
sbt |
|
| 182 |
179 181
|
chvarvv |
|
| 183 |
145 182
|
chvarvv |
|
| 184 |
183
|
exp45 |
|
| 185 |
184
|
3imp |
|
| 186 |
185
|
exlimdv |
|
| 187 |
131 186
|
mpd |
|
| 188 |
132
|
anbi1d |
|
| 189 |
188
|
anbi1d |
|
| 190 |
135
|
3anbi1d |
|
| 191 |
189 190
|
3anbi23d |
|
| 192 |
140
|
oveq1d |
|
| 193 |
192
|
oveqd |
|
| 194 |
|
opeq1 |
|
| 195 |
194
|
oveq1d |
|
| 196 |
|
eqidd |
|
| 197 |
195 196 142
|
oveq123d |
|
| 198 |
193 197
|
eqeq12d |
|
| 199 |
191 198
|
imbi12d |
|
| 200 |
|
simpl |
|
| 201 |
200
|
eleq1d |
|
| 202 |
201
|
anbi2d |
|
| 203 |
|
simpr |
|
| 204 |
200
|
oveq2d |
|
| 205 |
203 204
|
eleq12d |
|
| 206 |
200
|
oveq1d |
|
| 207 |
206
|
eleq2d |
|
| 208 |
205 207
|
3anbi12d |
|
| 209 |
202 208
|
3anbi13d |
|
| 210 |
5 209
|
bitrid |
|
| 211 |
|
df-3an |
|
| 212 |
210 211
|
bitrdi |
|
| 213 |
212
|
anbi2d |
|
| 214 |
|
3anass |
|
| 215 |
213 214
|
bitr4di |
|
| 216 |
200
|
opeq2d |
|
| 217 |
216
|
oveq1d |
|
| 218 |
200
|
opeq1d |
|
| 219 |
218
|
oveq1d |
|
| 220 |
219
|
oveqd |
|
| 221 |
217 220 203
|
oveq123d |
|
| 222 |
216
|
oveq1d |
|
| 223 |
|
eqidd |
|
| 224 |
222 223 203
|
oveq123d |
|
| 225 |
224
|
oveq2d |
|
| 226 |
221 225
|
eqeq12d |
|
| 227 |
215 226
|
imbi12d |
|
| 228 |
227
|
sbiedvw |
|
| 229 |
10
|
sbt |
|
| 230 |
228 229
|
chvarvv |
|
| 231 |
199 230
|
chvarvv |
|
| 232 |
1 2 3 4 6 64 123 187 231
|
iscatd |
|
| 233 |
1 2 3 232 6 64 123
|
catidd |
|
| 234 |
232 233
|
jca |
|