Metamath Proof Explorer


Theorem iscatd2

Description: Version of iscatd with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses iscatd2.b φB=BaseC
iscatd2.h φH=HomC
iscatd2.o φ·˙=compC
iscatd2.c φCV
iscatd2.ps ψxByBzBwBfxHygyHzkzHw
iscatd2.1 φyB1˙yHy
iscatd2.2 φψ1˙xy·˙yf=f
iscatd2.3 φψgyy·˙z1˙=g
iscatd2.4 φψgxy·˙zfxHz
iscatd2.5 φψkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
Assertion iscatd2 φCCatIdC=yB1˙

Proof

Step Hyp Ref Expression
1 iscatd2.b φB=BaseC
2 iscatd2.h φH=HomC
3 iscatd2.o φ·˙=compC
4 iscatd2.c φCV
5 iscatd2.ps ψxByBzBwBfxHygyHzkzHw
6 iscatd2.1 φyB1˙yHy
7 iscatd2.2 φψ1˙xy·˙yf=f
8 iscatd2.3 φψgyy·˙z1˙=g
9 iscatd2.4 φψgxy·˙zfxHz
10 iscatd2.5 φψkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
11 6 ne0d φyByHy
12 11 3ad2antr1 φyBaBraHyyHy
13 n0 yHyggyHy
14 12 13 sylib φyBaBraHyggyHy
15 n0 yHykkyHy
16 12 15 sylib φyBaBraHykkyHy
17 exdistrv gkgyHykyHyggyHykkyHy
18 simpll φyBaBraHygyHykyHyφ
19 simplr2 φyBaBraHygyHykyHyaB
20 simplr1 φyBaBraHygyHykyHyyB
21 19 20 jca φyBaBraHygyHykyHyaByB
22 simplr3 φyBaBraHygyHykyHyraHy
23 simprl φyBaBraHygyHykyHygyHy
24 simprr φyBaBraHygyHykyHykyHy
25 22 23 24 3jca φyBaBraHygyHykyHyraHygyHykyHy
26 simplll x=az=yw=yf=rx=a
27 26 eleq1d x=az=yw=yf=rxBaB
28 27 anbi1d x=az=yw=yf=rxByBaByB
29 simpllr x=az=yw=yf=rz=y
30 29 eleq1d x=az=yw=yf=rzByB
31 simplr x=az=yw=yf=rw=y
32 31 eleq1d x=az=yw=yf=rwByB
33 30 32 anbi12d x=az=yw=yf=rzBwByByB
34 anidm yByByB
35 33 34 bitrdi x=az=yw=yf=rzBwByB
36 simpr x=az=yw=yf=rf=r
37 26 oveq1d x=az=yw=yf=rxHy=aHy
38 36 37 eleq12d x=az=yw=yf=rfxHyraHy
39 29 oveq2d x=az=yw=yf=ryHz=yHy
40 39 eleq2d x=az=yw=yf=rgyHzgyHy
41 29 31 oveq12d x=az=yw=yf=rzHw=yHy
42 41 eleq2d x=az=yw=yf=rkzHwkyHy
43 38 40 42 3anbi123d x=az=yw=yf=rfxHygyHzkzHwraHygyHykyHy
44 28 35 43 3anbi123d x=az=yw=yf=rxByBzBwBfxHygyHzkzHwaByByBraHygyHykyHy
45 5 44 bitrid x=az=yw=yf=rψaByByBraHygyHykyHy
46 45 anbi2d x=az=yw=yf=rφψφaByByBraHygyHykyHy
47 26 opeq1d x=az=yw=yf=rxy=ay
48 47 oveq1d x=az=yw=yf=rxy·˙y=ay·˙y
49 eqidd x=az=yw=yf=r1˙=1˙
50 48 49 36 oveq123d x=az=yw=yf=r1˙xy·˙yf=1˙ay·˙yr
51 50 36 eqeq12d x=az=yw=yf=r1˙xy·˙yf=f1˙ay·˙yr=r
52 46 51 imbi12d x=az=yw=yf=rφψ1˙xy·˙yf=fφaByByBraHygyHykyHy1˙ay·˙yr=r
53 52 sbiedvw x=az=yw=yrfφψ1˙xy·˙yf=fφaByByBraHygyHykyHy1˙ay·˙yr=r
54 53 sbiedvw x=az=yywrfφψ1˙xy·˙yf=fφaByByBraHygyHykyHy1˙ay·˙yr=r
55 54 sbiedvw x=ayzywrfφψ1˙xy·˙yf=fφaByByBraHygyHykyHy1˙ay·˙yr=r
56 7 sbt rfφψ1˙xy·˙yf=f
57 56 sbt ywrfφψ1˙xy·˙yf=f
58 57 sbt yzywrfφψ1˙xy·˙yf=f
59 55 58 chvarvv φaByByBraHygyHykyHy1˙ay·˙yr=r
60 18 21 20 25 59 syl13anc φyBaBraHygyHykyHy1˙ay·˙yr=r
61 60 ex φyBaBraHygyHykyHy1˙ay·˙yr=r
62 61 exlimdvv φyBaBraHygkgyHykyHy1˙ay·˙yr=r
63 17 62 biimtrrid φyBaBraHyggyHykkyHy1˙ay·˙yr=r
64 14 16 63 mp2and φyBaBraHy1˙ay·˙yr=r
65 11 3ad2antr1 φyBaBryHayHy
66 n0 yHyffyHy
67 65 66 sylib φyBaBryHaffyHy
68 id y=ay=a
69 68 68 oveq12d y=ayHy=aHa
70 69 neeq1d y=ayHyaHa
71 11 ralrimiva φyByHy
72 71 adantr φyBaBryHayByHy
73 simpr2 φyBaBryHaaB
74 70 72 73 rspcdva φyBaBryHaaHa
75 n0 aHakkaHa
76 74 75 sylib φyBaBryHakkaHa
77 exdistrv fkfyHykaHaffyHykkaHa
78 simpll φyBaBryHafyHykaHaφ
79 simplr1 φyBaBryHafyHykaHayB
80 simplr2 φyBaBryHafyHykaHaaB
81 simprl φyBaBryHafyHykaHafyHy
82 simplr3 φyBaBryHafyHykaHaryHa
83 simprr φyBaBryHafyHykaHakaHa
84 81 82 83 3jca φyBaBryHafyHykaHafyHyryHakaHa
85 simplll x=yz=aw=ag=rx=y
86 85 eleq1d x=yz=aw=ag=rxByB
87 86 anbi1d x=yz=aw=ag=rxByByByB
88 87 34 bitrdi x=yz=aw=ag=rxByByB
89 simpllr x=yz=aw=ag=rz=a
90 89 eleq1d x=yz=aw=ag=rzBaB
91 simplr x=yz=aw=ag=rw=a
92 91 eleq1d x=yz=aw=ag=rwBaB
93 90 92 anbi12d x=yz=aw=ag=rzBwBaBaB
94 anidm aBaBaB
95 93 94 bitrdi x=yz=aw=ag=rzBwBaB
96 85 oveq1d x=yz=aw=ag=rxHy=yHy
97 96 eleq2d x=yz=aw=ag=rfxHyfyHy
98 simpr x=yz=aw=ag=rg=r
99 89 oveq2d x=yz=aw=ag=ryHz=yHa
100 98 99 eleq12d x=yz=aw=ag=rgyHzryHa
101 89 91 oveq12d x=yz=aw=ag=rzHw=aHa
102 101 eleq2d x=yz=aw=ag=rkzHwkaHa
103 97 100 102 3anbi123d x=yz=aw=ag=rfxHygyHzkzHwfyHyryHakaHa
104 88 95 103 3anbi123d x=yz=aw=ag=rxByBzBwBfxHygyHzkzHwyBaBfyHyryHakaHa
105 5 104 bitrid x=yz=aw=ag=rψyBaBfyHyryHakaHa
106 105 anbi2d x=yz=aw=ag=rφψφyBaBfyHyryHakaHa
107 89 oveq2d x=yz=aw=ag=ryy·˙z=yy·˙a
108 eqidd x=yz=aw=ag=r1˙=1˙
109 107 98 108 oveq123d x=yz=aw=ag=rgyy·˙z1˙=ryy·˙a1˙
110 109 98 eqeq12d x=yz=aw=ag=rgyy·˙z1˙=gryy·˙a1˙=r
111 106 110 imbi12d x=yz=aw=ag=rφψgyy·˙z1˙=gφyBaBfyHyryHakaHaryy·˙a1˙=r
112 111 sbiedvw x=yz=aw=argφψgyy·˙z1˙=gφyBaBfyHyryHakaHaryy·˙a1˙=r
113 112 sbiedvw x=yz=aawrgφψgyy·˙z1˙=gφyBaBfyHyryHakaHaryy·˙a1˙=r
114 113 sbiedvw x=yazawrgφψgyy·˙z1˙=gφyBaBfyHyryHakaHaryy·˙a1˙=r
115 8 sbt rgφψgyy·˙z1˙=g
116 115 sbt awrgφψgyy·˙z1˙=g
117 116 sbt azawrgφψgyy·˙z1˙=g
118 114 117 chvarvv φyBaBfyHyryHakaHaryy·˙a1˙=r
119 78 79 80 84 118 syl13anc φyBaBryHafyHykaHaryy·˙a1˙=r
120 119 ex φyBaBryHafyHykaHaryy·˙a1˙=r
121 120 exlimdvv φyBaBryHafkfyHykaHaryy·˙a1˙=r
122 77 121 biimtrrid φyBaBryHaffyHykkaHaryy·˙a1˙=r
123 67 76 122 mp2and φyBaBryHaryy·˙a1˙=r
124 id y=zy=z
125 124 124 oveq12d y=zyHy=zHz
126 125 neeq1d y=zyHyzHz
127 71 3ad2ant1 φyBaBzBryHagaHzyByHy
128 simp23 φyBaBzBryHagaHzzB
129 126 127 128 rspcdva φyBaBzBryHagaHzzHz
130 n0 zHzkkzHz
131 129 130 sylib φyBaBzBryHagaHzkkzHz
132 eleq1w x=yxByB
133 132 3anbi1d x=yxBaBzByBaBzB
134 oveq1 x=yxHa=yHa
135 134 eleq2d x=yrxHaryHa
136 135 anbi1d x=yrxHagaHzryHagaHz
137 136 anbi1d x=yrxHagaHzkzHzryHagaHzkzHz
138 133 137 anbi12d x=yxBaBzBrxHagaHzkzHzyBaBzBryHagaHzkzHz
139 138 anbi2d x=yφxBaBzBrxHagaHzkzHzφyBaBzBryHagaHzkzHz
140 opeq1 x=yxa=ya
141 140 oveq1d x=yxa·˙z=ya·˙z
142 141 oveqd x=ygxa·˙zr=gya·˙zr
143 oveq1 x=yxHz=yHz
144 142 143 eleq12d x=ygxa·˙zrxHzgya·˙zryHz
145 139 144 imbi12d x=yφxBaBzBrxHagaHzkzHzgxa·˙zrxHzφyBaBzBryHagaHzkzHzgya·˙zryHz
146 df-3an xByBzBwBfxHygyHzkzHwxByBzBwBfxHygyHzkzHw
147 5 146 bitri ψxByBzBwBfxHygyHzkzHw
148 simpll y=aw=zf=ry=a
149 148 eleq1d y=aw=zf=ryBaB
150 149 anbi2d y=aw=zf=rxByBxBaB
151 simplr y=aw=zf=rw=z
152 151 eleq1d y=aw=zf=rwBzB
153 152 anbi2d y=aw=zf=rzBwBzBzB
154 anidm zBzBzB
155 153 154 bitrdi y=aw=zf=rzBwBzB
156 150 155 anbi12d y=aw=zf=rxByBzBwBxBaBzB
157 df-3an xBaBzBxBaBzB
158 156 157 bitr4di y=aw=zf=rxByBzBwBxBaBzB
159 simpr y=aw=zf=rf=r
160 148 oveq2d y=aw=zf=rxHy=xHa
161 159 160 eleq12d y=aw=zf=rfxHyrxHa
162 148 oveq1d y=aw=zf=ryHz=aHz
163 162 eleq2d y=aw=zf=rgyHzgaHz
164 151 oveq2d y=aw=zf=rzHw=zHz
165 164 eleq2d y=aw=zf=rkzHwkzHz
166 161 163 165 3anbi123d y=aw=zf=rfxHygyHzkzHwrxHagaHzkzHz
167 df-3an rxHagaHzkzHzrxHagaHzkzHz
168 166 167 bitrdi y=aw=zf=rfxHygyHzkzHwrxHagaHzkzHz
169 158 168 anbi12d y=aw=zf=rxByBzBwBfxHygyHzkzHwxBaBzBrxHagaHzkzHz
170 147 169 bitrid y=aw=zf=rψxBaBzBrxHagaHzkzHz
171 170 anbi2d y=aw=zf=rφψφxBaBzBrxHagaHzkzHz
172 148 opeq2d y=aw=zf=rxy=xa
173 172 oveq1d y=aw=zf=rxy·˙z=xa·˙z
174 eqidd y=aw=zf=rg=g
175 173 174 159 oveq123d y=aw=zf=rgxy·˙zf=gxa·˙zr
176 175 eleq1d y=aw=zf=rgxy·˙zfxHzgxa·˙zrxHz
177 171 176 imbi12d y=aw=zf=rφψgxy·˙zfxHzφxBaBzBrxHagaHzkzHzgxa·˙zrxHz
178 177 sbiedvw y=aw=zrfφψgxy·˙zfxHzφxBaBzBrxHagaHzkzHzgxa·˙zrxHz
179 178 sbiedvw y=azwrfφψgxy·˙zfxHzφxBaBzBrxHagaHzkzHzgxa·˙zrxHz
180 9 sbt rfφψgxy·˙zfxHz
181 180 sbt zwrfφψgxy·˙zfxHz
182 179 181 chvarvv φxBaBzBrxHagaHzkzHzgxa·˙zrxHz
183 145 182 chvarvv φyBaBzBryHagaHzkzHzgya·˙zryHz
184 183 exp45 φyBaBzBryHagaHzkzHzgya·˙zryHz
185 184 3imp φyBaBzBryHagaHzkzHzgya·˙zryHz
186 185 exlimdv φyBaBzBryHagaHzkkzHzgya·˙zryHz
187 131 186 mpd φyBaBzBryHagaHzgya·˙zryHz
188 132 anbi1d x=yxBaByBaB
189 188 anbi1d x=yxBaBzBwByBaBzBwB
190 135 3anbi1d x=yrxHagaHzkzHwryHagaHzkzHw
191 189 190 3anbi23d x=yφxBaBzBwBrxHagaHzkzHwφyBaBzBwBryHagaHzkzHw
192 140 oveq1d x=yxa·˙w=ya·˙w
193 192 oveqd x=ykaz·˙wgxa·˙wr=kaz·˙wgya·˙wr
194 opeq1 x=yxz=yz
195 194 oveq1d x=yxz·˙w=yz·˙w
196 eqidd x=yk=k
197 195 196 142 oveq123d x=ykxz·˙wgxa·˙zr=kyz·˙wgya·˙zr
198 193 197 eqeq12d x=ykaz·˙wgxa·˙wr=kxz·˙wgxa·˙zrkaz·˙wgya·˙wr=kyz·˙wgya·˙zr
199 191 198 imbi12d x=yφxBaBzBwBrxHagaHzkzHwkaz·˙wgxa·˙wr=kxz·˙wgxa·˙zrφyBaBzBwBryHagaHzkzHwkaz·˙wgya·˙wr=kyz·˙wgya·˙zr
200 simpl y=af=ry=a
201 200 eleq1d y=af=ryBaB
202 201 anbi2d y=af=rxByBxBaB
203 simpr y=af=rf=r
204 200 oveq2d y=af=rxHy=xHa
205 203 204 eleq12d y=af=rfxHyrxHa
206 200 oveq1d y=af=ryHz=aHz
207 206 eleq2d y=af=rgyHzgaHz
208 205 207 3anbi12d y=af=rfxHygyHzkzHwrxHagaHzkzHw
209 202 208 3anbi13d y=af=rxByBzBwBfxHygyHzkzHwxBaBzBwBrxHagaHzkzHw
210 5 209 bitrid y=af=rψxBaBzBwBrxHagaHzkzHw
211 df-3an xBaBzBwBrxHagaHzkzHwxBaBzBwBrxHagaHzkzHw
212 210 211 bitrdi y=af=rψxBaBzBwBrxHagaHzkzHw
213 212 anbi2d y=af=rφψφxBaBzBwBrxHagaHzkzHw
214 3anass φxBaBzBwBrxHagaHzkzHwφxBaBzBwBrxHagaHzkzHw
215 213 214 bitr4di y=af=rφψφxBaBzBwBrxHagaHzkzHw
216 200 opeq2d y=af=rxy=xa
217 216 oveq1d y=af=rxy·˙w=xa·˙w
218 200 opeq1d y=af=ryz=az
219 218 oveq1d y=af=ryz·˙w=az·˙w
220 219 oveqd y=af=rkyz·˙wg=kaz·˙wg
221 217 220 203 oveq123d y=af=rkyz·˙wgxy·˙wf=kaz·˙wgxa·˙wr
222 216 oveq1d y=af=rxy·˙z=xa·˙z
223 eqidd y=af=rg=g
224 222 223 203 oveq123d y=af=rgxy·˙zf=gxa·˙zr
225 224 oveq2d y=af=rkxz·˙wgxy·˙zf=kxz·˙wgxa·˙zr
226 221 225 eqeq12d y=af=rkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfkaz·˙wgxa·˙wr=kxz·˙wgxa·˙zr
227 215 226 imbi12d y=af=rφψkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfφxBaBzBwBrxHagaHzkzHwkaz·˙wgxa·˙wr=kxz·˙wgxa·˙zr
228 227 sbiedvw y=arfφψkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfφxBaBzBwBrxHagaHzkzHwkaz·˙wgxa·˙wr=kxz·˙wgxa·˙zr
229 10 sbt rfφψkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
230 228 229 chvarvv φxBaBzBwBrxHagaHzkzHwkaz·˙wgxa·˙wr=kxz·˙wgxa·˙zr
231 199 230 chvarvv φyBaBzBwBryHagaHzkzHwkaz·˙wgya·˙wr=kyz·˙wgya·˙zr
232 1 2 3 4 6 64 123 187 231 iscatd φCCat
233 1 2 3 232 6 64 123 catidd φIdC=yB1˙
234 232 233 jca φCCatIdC=yB1˙