Metamath Proof Explorer


Theorem isdomn4

Description: A ring is a domain iff it is nonzero and the cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024)

Ref Expression
Hypotheses isdomn4.b B=BaseR
isdomn4.0 0˙=0R
isdomn4.x ·˙=R
Assertion isdomn4 RDomnRNzRingaB0˙bBcBa·˙b=a·˙cb=c

Proof

Step Hyp Ref Expression
1 isdomn4.b B=BaseR
2 isdomn4.0 0˙=0R
3 isdomn4.x ·˙=R
4 domnnzr RDomnRNzRing
5 eqid -R=-R
6 domnring RDomnRRing
7 6 adantr RDomnaB0˙bBcBRRing
8 eldifi aB0˙aB
9 8 3ad2ant1 aB0˙bBcBaB
10 9 adantl RDomnaB0˙bBcBaB
11 simpr2 RDomnaB0˙bBcBbB
12 simpr3 RDomnaB0˙bBcBcB
13 1 3 5 7 10 11 12 ringsubdi RDomnaB0˙bBcBa·˙b-Rc=a·˙b-Ra·˙c
14 13 eqeq1d RDomnaB0˙bBcBa·˙b-Rc=0˙a·˙b-Ra·˙c=0˙
15 simpll RDomnaB0˙bBcBb-Rc0˙RDomn
16 10 adantr RDomnaB0˙bBcBb-Rc0˙aB
17 eldifsni aB0˙a0˙
18 17 3ad2ant1 aB0˙bBcBa0˙
19 18 ad2antlr RDomnaB0˙bBcBb-Rc0˙a0˙
20 6 ringgrpd RDomnRGrp
21 1 5 grpsubcl RGrpbBcBb-RcB
22 20 21 syl3an1 RDomnbBcBb-RcB
23 22 3adant3r1 RDomnaB0˙bBcBb-RcB
24 23 adantr RDomnaB0˙bBcBb-Rc0˙b-RcB
25 simpr RDomnaB0˙bBcBb-Rc0˙b-Rc0˙
26 1 3 2 domnmuln0 RDomnaBa0˙b-RcBb-Rc0˙a·˙b-Rc0˙
27 15 16 19 24 25 26 syl122anc RDomnaB0˙bBcBb-Rc0˙a·˙b-Rc0˙
28 27 ex RDomnaB0˙bBcBb-Rc0˙a·˙b-Rc0˙
29 28 necon4d RDomnaB0˙bBcBa·˙b-Rc=0˙b-Rc=0˙
30 14 29 sylbird RDomnaB0˙bBcBa·˙b-Ra·˙c=0˙b-Rc=0˙
31 20 adantr RDomnaB0˙bBcBRGrp
32 id bBbB
33 1 3 ringcl RRingaBbBa·˙bB
34 6 8 32 33 syl3an RDomnaB0˙bBa·˙bB
35 34 3adant3r3 RDomnaB0˙bBcBa·˙bB
36 id cBcB
37 1 3 ringcl RRingaBcBa·˙cB
38 6 8 36 37 syl3an RDomnaB0˙cBa·˙cB
39 38 3adant3r2 RDomnaB0˙bBcBa·˙cB
40 1 2 5 grpsubeq0 RGrpa·˙bBa·˙cBa·˙b-Ra·˙c=0˙a·˙b=a·˙c
41 31 35 39 40 syl3anc RDomnaB0˙bBcBa·˙b-Ra·˙c=0˙a·˙b=a·˙c
42 1 2 5 grpsubeq0 RGrpbBcBb-Rc=0˙b=c
43 31 11 12 42 syl3anc RDomnaB0˙bBcBb-Rc=0˙b=c
44 30 41 43 3imtr3d RDomnaB0˙bBcBa·˙b=a·˙cb=c
45 44 ralrimivvva RDomnaB0˙bBcBa·˙b=a·˙cb=c
46 4 45 jca RDomnRNzRingaB0˙bBcBa·˙b=a·˙cb=c
47 nzrring RNzRingRRing
48 47 ringgrpd RNzRingRGrp
49 1 2 grpidcl RGrp0˙B
50 48 49 syl RNzRing0˙B
51 50 adantr RNzRingaB0˙bB0˙B
52 oveq2 c=0˙a·˙c=a·˙0˙
53 52 eqeq2d c=0˙a·˙b=a·˙ca·˙b=a·˙0˙
54 eqeq2 c=0˙b=cb=0˙
55 53 54 imbi12d c=0˙a·˙b=a·˙cb=ca·˙b=a·˙0˙b=0˙
56 55 rspcv 0˙BcBa·˙b=a·˙cb=ca·˙b=a·˙0˙b=0˙
57 51 56 syl RNzRingaB0˙bBcBa·˙b=a·˙cb=ca·˙b=a·˙0˙b=0˙
58 1 3 2 ringrz RRingaBa·˙0˙=0˙
59 47 8 58 syl2an RNzRingaB0˙a·˙0˙=0˙
60 59 adantrr RNzRingaB0˙bBa·˙0˙=0˙
61 60 eqeq2d RNzRingaB0˙bBa·˙b=a·˙0˙a·˙b=0˙
62 61 imbi1d RNzRingaB0˙bBa·˙b=a·˙0˙b=0˙a·˙b=0˙b=0˙
63 57 62 sylibd RNzRingaB0˙bBcBa·˙b=a·˙cb=ca·˙b=0˙b=0˙
64 63 ralimdvva RNzRingaB0˙bBcBa·˙b=a·˙cb=caB0˙bBa·˙b=0˙b=0˙
65 isdomn5 aBbBa·˙b=0˙a=0˙b=0˙aB0˙bBa·˙b=0˙b=0˙
66 64 65 syl6ibr RNzRingaB0˙bBcBa·˙b=a·˙cb=caBbBa·˙b=0˙a=0˙b=0˙
67 66 imdistani RNzRingaB0˙bBcBa·˙b=a·˙cb=cRNzRingaBbBa·˙b=0˙a=0˙b=0˙
68 1 3 2 isdomn RDomnRNzRingaBbBa·˙b=0˙a=0˙b=0˙
69 67 68 sylibr RNzRingaB0˙bBcBa·˙b=a·˙cb=cRDomn
70 46 69 impbii RDomnRNzRingaB0˙bBcBa·˙b=a·˙cb=c